cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 35 results. Next

A172297 Partial sums of A002234.

Original entry on oeis.org

2, 5, 11, 41, 116, 197, 312, 435, 684, 1046, 1430, 1892, 2404, 3155, 3977, 9289, 17044, 26575, 38954, 54776, 73661, 96632, 119637, 218363, 361381, 512404, 1179475, 2374678, 3643657, 5111420, 7125412, 9493318, 13246266, 30262868
Offset: 1

Views

Author

Jonathan Vos Post, Jan 30 2010

Keywords

Comments

The subsequence of primes in this sequence begins: 2, 5, 11, 41, 197, 218363, 3643657.

Examples

			a(6) = 2 + 3 + 6 + 30 + 75 + 81 = 197.
		

Crossrefs

Formula

a(n) = Sum_{i=1..n} {i such that the Woodall number i*2^i - 1 is prime}.

Extensions

a(34) added from the data at A002234 by Amiram Eldar, Jul 22 2025

A003261 Woodall (or Riesel) numbers: n*2^n - 1.

Original entry on oeis.org

1, 7, 23, 63, 159, 383, 895, 2047, 4607, 10239, 22527, 49151, 106495, 229375, 491519, 1048575, 2228223, 4718591, 9961471, 20971519, 44040191, 92274687, 192937983, 402653183, 838860799, 1744830463, 3623878655, 7516192767, 15569256447, 32212254719, 66571993087
Offset: 1

Views

Author

Keywords

Comments

For n>1, a(n) is base at which zero is reached for the function "write f(j) in base j, read as base j+1 and then subtract 1 to give f(j+1)" starting from f(n) = n^2 - 1. - Henry Bottomley, Aug 06 2000
Sequence corresponds also to the maximum chain length of the classic puzzle whereby, under agreed commercial terms, an asset of unringed golden chain, when judiciously fragmented into as few as n pieces and n-1 opened links (through n-1 cuts), might be used to settle debt sequentially, with a golden link covering for unit cost. Here beside the n-1 opened links, the n fragmented pieces have lengths n, 2*n, 4*n, ..., 2^(n-1)*n. For instance, the chain of original length a(5)=159, if segregated by 4 cuts into 5+1+10+1+20+1+40+1+80, may be used to pay sequentially, i.e., a link-cost at a time, for an equivalent cost up to 159 links, to the same creditor. - Lekraj Beedassy, Feb 06 2003

Examples

			G.f. = x + 7*x^2 + 23*x^3 + 63*x^4 + 159*x^5 + 383*x^6 + 895*x^7 + ... - _Michael Somos_, Nov 04 2018
		

References

  • A. Brousseau, Number Theory Tables. Fibonacci Association, San Jose, CA, 1973, p. 159.
  • K. R. Bhutani and A. B. Levin, "The Problem of Sawing a Chain", Journal of Recreational Mathematics 2002-3 31(1) 32-35.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • M. Gardner, Martin Gardner's Sixth Book of Mathematical Diversions from Scientific American, "Gold Links", Problem 4, pp. 50-51; 57-58, University of Chicago Press, 1983.
  • O. O'Shea, Mathematical Brainteasers with Surprising Solutions, Problem 76, pp. 183-185, Prometheus Books, Guilford, Connecticut, 2020.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 241.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A036289(n) - 1 = A002064(n) - 2.
Cf. A133653.

Programs

Formula

G.f.: x*(-1-2*x+4*x^2) / ( (x-1)*(-1+2*x)^2 ). - Simon Plouffe in his 1992 dissertation
Binomial transform of A133653 and double binomial transform of [1, 5, -1, 1, -1, 1, ...]. - Gary W. Adamson, Sep 19 2007
a(n) = -(2)^n * A006127(-n) for all n in Z. - Michael Somos, Nov 04 2018
E.g.f.: 1 + exp(x)*(2*exp(x)*x - 1). - Stefano Spezia, Nov 24 2024

A005849 Indices of prime Cullen numbers: numbers k such that k*2^k + 1 is prime.

Original entry on oeis.org

1, 141, 4713, 5795, 6611, 18496, 32292, 32469, 59656, 90825, 262419, 361275, 481899, 1354828, 6328548, 6679881
Offset: 1

Views

Author

Keywords

Comments

From Amiram Eldar, Jun 05 2021: (Start)
The terms were found by:
a(1) - Cullen (1905). He found that there are no other terms up to 100 with the possible exception of 53. Cunningham (1906) showed that the 53rd Cullen number is composite and that the only possible term up to 200 is 141.
a(2) - Robinson (1958).
a(3)-a(6) - Keller (1995).
a(7)-a(8) - Masakatu Morii (1997).
a(9)-a(10) - Jeffrey Young (1997).
a(11)-a(12) - Darren Smith (1998).
a(13) - Masakatu Morii (1998).
a(14) - Mark Rodenkirch (2005).
a(15) - Dennis R. Gesker (2009).
a(16) - Magnus Bergman (2009). (End)

References

  • A. J. Cunningham, Solution of question 15897, Math. Quest. Educ. Times, Vol. 10 (1906), pp. 44-47.
  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 141, p. 48, Ellipses, Paris 2008.
  • Harvey Dubner, Generalized Cullen numbers, J. Rec. Math., Vol. 21, No. 3 (1989), pp. 190-191.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B20.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 283.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002064, A002234, A050920, A173474 (complement).

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[# 2^# + 1] &] (* Alonso del Arte, Jul 30 2017 *)
  • PARI
    is(n)=isprime(n<Charles R Greathouse IV, Feb 06 2017

Extensions

a(14) = 1354828 from old Proth Search pages by Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Apr 20 2006
The term 1467763 was added in error and has now been deleted; Jens Kruse Andersen, Nov 28 2007, remarks that 1467763 * 2^1467763 - 1 is a Woodall prime, but 3 divides the Cullen number 1467763 * 2^1467763 + 1.
6328548 from John Blazek, May 14 2009. He later reports that the search of the range from 6300000 to 6328548 was completed on May 28 2009.
Added a(16) = 6679881 from Caldwell's page, fixed broken link. - M. F. Hasler, Jan 18 2015
Name edited by Andrey Zabolotskiy and Felix Fröhlich, May 28 2021

A050918 Woodall primes: primes of form k*2^k-1.

Original entry on oeis.org

7, 23, 383, 32212254719, 2833419889721787128217599, 195845982777569926302400511, 4776913109852041418248056622882488319, 1307960347852357218937346147315859062783, 225251798594466661409915431774713195745814267044878909733007331390393510002687
Offset: 1

Views

Author

N. J. A. Sloane, Dec 30 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[n 2^n - 1, {n, 300}], PrimeQ] (* Harvey P. Dale, Jul 12 2012 *)
  • PARI
    for(n=2,999,ispseudoprime(p=n*2^n-1)&&print1(p",")) \\ M. F. Hasler, May 10 2017
    
  • Python
    from sympy import isprime
    def auptok(limit):
        return list(filter(isprime, (k*2**k-1 for k in range(1, limit+1))))
    print(auptok(1000)) # Michael S. Branicky, Jul 23 2021

Formula

a(n) = A002234(n)*2^A002234(n) - 1. - M. F. Hasler, May 10 2017

A086661 Numbers k such that k*4^k-1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 8, 14, 23, 63, 107, 132, 428, 530, 1137, 1973, 2000, 7064, 20747, 79574, 113570, 293912, 1993191
Offset: 1

Views

Author

Farideh Firoozbakht, Jul 27 2003

Keywords

Comments

2, 3, 5, 23, 107, 1973, 20747 is the subsequence of prime terms.

Examples

			2 is in the sequence because 2*4^2-1=31 is prime.
3 is in the sequence because 3*4^3-1=191 is prime.
		

References

  • H. Dubner, Generalized Cullen Numbers, J. Rec. Math, 21 (No. 3, 1989).

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[n*4^n-1], Print[n]], {n, 4000}]
    Select[Range[2000],PrimeQ[# 4^#-1]&] (* Harvey P. Dale, Nov 09 2024 *)
  • PARI
    is(n)=ispseudoprime(n*4^n-1) \\ Charles R Greathouse IV, May 22 2017

Extensions

One more term from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Nov 23 2004
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
Prepended first terms 1 and 2 - Pierre CAMI, Jul 21 2014
a(20)-a(21) from Harvey link by Ray Chandler, Apr 10 2016

A242200 Numbers n such that n*7^n - 1 is prime.

Original entry on oeis.org

2, 18, 68, 84, 3812, 14838, 51582
Offset: 1

Views

Author

Vincenzo Librandi, May 09 2014

Keywords

Crossrefs

Cf. numbers n such that n*k^n - 1 is prime. A002234 (k=2), A006553 (k=3), A086661 (k=4), A059676 (k=5), A059675 (k=6), this sequence (k=7), A242201 (k=8), A242202 (k=9), A059671 (k=10).

Programs

  • Magma
    [n: n in [0..3000] | IsPrime(n*7^n-1)];
    
  • Mathematica
    Select[Range[2000], PrimeQ[# 7^# - 1] &]
  • PARI
    is(n)=ispseudoprime(n*7^n-1) \\ Charles R Greathouse IV, May 22 2017

Extensions

a(5) - a(7) from Harvey's list (see Links).

A242273 Numbers n such that n*2^n - 1 is a semiprime.

Original entry on oeis.org

5, 7, 8, 9, 10, 12, 18, 20, 25, 32, 37, 39, 72, 80, 85, 90, 97, 142, 150, 159, 163, 168, 169, 186, 192, 211, 231, 272, 305, 349, 363, 369, 375, 463, 465, 615, 668, 672, 789, 797, 817, 859, 908, 938, 951, 1092, 1123
Offset: 1

Views

Author

Vincenzo Librandi, May 12 2014

Keywords

Comments

The semiprimes of this form are: 159, 895, 2047, 4607, 10239, ... (A242115).
a(48) >= 1152. - Hugo Pfoertner, Jul 29 2019

Crossrefs

Cf. numbers n such that n*k^n - 1 is semiprime: this sequence (k=2), A242274 (k=3), A242335 (k=4), A242336 (k=5), A242337 (k=6), A242338 (k=7), A242339 (k=8), A242340 (k=9), A242341 (k=10).

Programs

  • Magma
    IsSemiprime:=func; [n: n in [2..1000] | IsSemiprime(s) where s is n*2^n-1];
  • Mathematica
    Select[Range[1000], PrimeOmega[# 2^# - 1]==2&]

Formula

A003261(a(n)) = A242115(n). - Amiram Eldar, Nov 27 2019

Extensions

a(28)-a(29) from Luke March, Aug 05 2015
a(30)-a(42) from Carl Schildkraut, Aug 18 2015
Corrected and extended by Luke March, Sep 01 2015
Missing terms a(26)-a(27) inserted by Amiram Eldar, Nov 27 2019

A299374 Numbers k such that k * 11^k - 1 is prime.

Original entry on oeis.org

2, 8, 252, 1184, 1308
Offset: 1

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(6) > 500000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), this sequence (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*11^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*11^n-1] &]
  • PARI
    for(n=1, 10000, if(ispseudoprime(n*11^n-1), print1(n", ")))
    

A299375 Numbers k such that k * 12^k - 1 is prime.

Original entry on oeis.org

1, 6, 43, 175, 821, 910, 1157, 13748, 27032, 71761, 229918
Offset: 1

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(12) > 500000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), this sequence (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*12^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*12^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*12^n-1), print1(n", ")))
    

A299376 Numbers k such that k * 13^k - 1 is prime.

Original entry on oeis.org

2, 6, 563528
Offset: 1

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(4) > 570008.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), this sequence (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*13^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*13^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*13^n-1), print1(n", ")))
    
Showing 1-10 of 35 results. Next