cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A128193 First differences of values of n for Cullen primes in A005849.

Original entry on oeis.org

140, 4572, 1082, 816, 11885, 13796, 177, 27187, 31169, 171594, 98856, 120624, 872929, 4973720, 351333
Offset: 1

Views

Author

Enoch Haga, Feb 18 2007

Keywords

Comments

Carlos Rivera's Problem 50 is devoted to this topic. If we pair differences according to magnitude, we first obtain 177-140=37 a prime. This raises the question as to whether there are other such prime values.

Examples

			a(1)=140 because the first pair of n are 1 and 141. 141 - 1 = 140.
		

Crossrefs

Formula

a(n) = A005849(n+1) - A005849(n). - Michel Marcus, Sep 27 2020

Extensions

Offset 1 from Michel Marcus, Sep 27 2020
a(14)-a(15) added by Florian Baur, Sep 27 2020

A128194 Absolute value of second differences of A005849.

Original entry on oeis.org

4432, 3490, 266, 11069, 1911, 13619, 27010, 3982, 140425, 72738, 21768, 752305, 4100791, 4622387
Offset: 1

Views

Author

Enoch Haga, Feb 18 2007

Keywords

Comments

In this sequence a(4) and a(6) are primes. Also a(2)+1, a(7)+1 and a(8)+1 are primes. And a(11)-1 is prime. These may at some future time begin three new sequences.

Examples

			a(1) = 4432 because the first two values of first differences in A128193 are 140 and 4572. 4572-140 = 4432, the first second difference.
		

Crossrefs

Formula

a(n) = abs(A128193(n+1) - A128193(n)). - Amiram Eldar, Jul 17 2025

Extensions

Offset changed to 1, a(9)-a(10) corrected and a(13)-a(14) added by Amiram Eldar, Jul 17 2025

A002064 Cullen numbers: a(n) = n*2^n + 1.

Original entry on oeis.org

1, 3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, 229377, 491521, 1048577, 2228225, 4718593, 9961473, 20971521, 44040193, 92274689, 192937985, 402653185, 838860801, 1744830465, 3623878657, 7516192769, 15569256449, 32212254721, 66571993089
Offset: 0

Views

Author

Keywords

Comments

Binomial transform is A084859. Inverse binomial transform is A004277. - Paul Barry, Jun 12 2003
Let A be the Hessenberg matrix of order n defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1] =-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= (-1)^(n-1)*coeff(charpoly(A,x),x). - Milan Janjic, Jan 26 2010
Indices of primes are listed in A005849. - M. F. Hasler, Jan 18 2015
Add the list of fractions beginning with 1/2 + 3/4 + 7/8 + ... + (2^n - 1)/2^n and take the sums pairwise from left to right. For 1/2 + 3/4 = 5/4, 5 + 4 = 9 = a(2); for 5/4 + 7/8 = 17/8, 17 + 8 = 25 = a(3); for 17/8 + 15/16 = 49/16, 49 + 16 = 65 = a(4); for 49/16 + 31/32 = 129/32, 129 + 32 = 161 = a(5). For each pairwise sum a/b, a + b = n*2^(n+1). - J. M. Bergot, May 06 2015
Number of divisors of (2^n)^(2^n). - Gus Wiseman, May 03 2021
Named after the Irish Jesuit priest James Cullen (1867-1933), who checked the primality of the terms up to n=100. - Amiram Eldar, Jun 05 2021

Examples

			G.f. = 1 + 3*x + 9*x^2 + 25*x^3 + 65*x^4 + 161*x^5 + 385*x^6 + 897*x^7 + ... - _Michael Somos_, Jul 18 2018
		

References

  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • R. K. Guy, Unsolved Problems in Number Theory, B20.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 240-242.
  • W. Sierpiński, Elementary Theory of Numbers. Państ. Wydaw. Nauk., Warsaw, 1964, p. 346.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Diagonal k = n + 1 of A046688.
A000005 counts divisors of n.
A000312 = n^n.
A002109 gives hyperfactorials (sigma: A260146, omega: A303281).
A057156 = (2^n)^(2^n).
A062319 counts divisors of n^n.
A173339 lists positions of squares in A062319.
A188385 gives the highest prime exponent in n^n.
A249784 counts divisors of n^n^n.

Programs

Formula

a(n) = 4a(n-1) - 4a(n-2) + 1. - Paul Barry, Jun 12 2003
a(n) = sum of row (n+1) of triangle A130197. Example: a(3) = 25 = (12 + 8 + 4 + 1), row 4 of A130197. - Gary W. Adamson, May 16 2007
Row sums of triangle A134081. - Gary W. Adamson, Oct 07 2007
Equals row sums of triangle A143038. - Gary W. Adamson, Jul 18 2008
Equals row sums of triangle A156708. - Gary W. Adamson, Feb 13 2009
G.f.: -(1-2*x+2*x^2)/((-1+x)*(2*x-1)^2). a(n) = A001787(n+1)+1-A000079(n). - R. J. Mathar, Nov 16 2007
a(n) = 1 + 2^(n + log_2(n)) ~ 1 + A000079(n+A004257(n)). a(n) ~ A000051(n+A004257(n)). - Jonathan Vos Post, Jul 20 2008
a(0)=1, a(1)=3, a(2)=9, a(n) = 5*a(n-1)-8*a(n-2)+4*a(n-3). - Harvey P. Dale, Oct 13 2011
a(n) = A036289(n) + 1 = A003261(n) + 2. - Reinhard Zumkeller, Mar 16 2013
E.g.f.: 2*x*exp(2*x) + exp(x). - Robert Israel, Dec 12 2014
a(n) = 2^n * A000325(n) = 4^n * A186947(-n) for all n in Z. - Michael Somos, Jul 18 2018
a(n) = Sum_{i=0..n-1} a(i) + A000325(n+1). - Ivan N. Ianakiev, Aug 07 2019
a(n) = sigma((2^n)^(2^n)) = A000005(A057156(n)) = A062319(2^n). - Gus Wiseman, May 03 2021
Sum_{n>=0} 1/a(n) = A340841. - Amiram Eldar, Jun 05 2021

Extensions

Edited by M. F. Hasler, Oct 31 2012

A003261 Woodall (or Riesel) numbers: n*2^n - 1.

Original entry on oeis.org

1, 7, 23, 63, 159, 383, 895, 2047, 4607, 10239, 22527, 49151, 106495, 229375, 491519, 1048575, 2228223, 4718591, 9961471, 20971519, 44040191, 92274687, 192937983, 402653183, 838860799, 1744830463, 3623878655, 7516192767, 15569256447, 32212254719, 66571993087
Offset: 1

Views

Author

Keywords

Comments

For n>1, a(n) is base at which zero is reached for the function "write f(j) in base j, read as base j+1 and then subtract 1 to give f(j+1)" starting from f(n) = n^2 - 1. - Henry Bottomley, Aug 06 2000
Sequence corresponds also to the maximum chain length of the classic puzzle whereby, under agreed commercial terms, an asset of unringed golden chain, when judiciously fragmented into as few as n pieces and n-1 opened links (through n-1 cuts), might be used to settle debt sequentially, with a golden link covering for unit cost. Here beside the n-1 opened links, the n fragmented pieces have lengths n, 2*n, 4*n, ..., 2^(n-1)*n. For instance, the chain of original length a(5)=159, if segregated by 4 cuts into 5+1+10+1+20+1+40+1+80, may be used to pay sequentially, i.e., a link-cost at a time, for an equivalent cost up to 159 links, to the same creditor. - Lekraj Beedassy, Feb 06 2003

Examples

			G.f. = x + 7*x^2 + 23*x^3 + 63*x^4 + 159*x^5 + 383*x^6 + 895*x^7 + ... - _Michael Somos_, Nov 04 2018
		

References

  • A. Brousseau, Number Theory Tables. Fibonacci Association, San Jose, CA, 1973, p. 159.
  • K. R. Bhutani and A. B. Levin, "The Problem of Sawing a Chain", Journal of Recreational Mathematics 2002-3 31(1) 32-35.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • M. Gardner, Martin Gardner's Sixth Book of Mathematical Diversions from Scientific American, "Gold Links", Problem 4, pp. 50-51; 57-58, University of Chicago Press, 1983.
  • O. O'Shea, Mathematical Brainteasers with Surprising Solutions, Problem 76, pp. 183-185, Prometheus Books, Guilford, Connecticut, 2020.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 241.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A036289(n) - 1 = A002064(n) - 2.
Cf. A133653.

Programs

Formula

G.f.: x*(-1-2*x+4*x^2) / ( (x-1)*(-1+2*x)^2 ). - Simon Plouffe in his 1992 dissertation
Binomial transform of A133653 and double binomial transform of [1, 5, -1, 1, -1, 1, ...]. - Gary W. Adamson, Sep 19 2007
a(n) = -(2)^n * A006127(-n) for all n in Z. - Michael Somos, Nov 04 2018
E.g.f.: 1 + exp(x)*(2*exp(x)*x - 1). - Stefano Spezia, Nov 24 2024

A002234 Numbers k such that the Woodall number k*2^k - 1 is prime.

Original entry on oeis.org

2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, 462, 512, 751, 822, 5312, 7755, 9531, 12379, 15822, 18885, 22971, 23005, 98726, 143018, 151023, 667071, 1195203, 1268979, 1467763, 2013992, 2367906, 3752948, 17016602
Offset: 1

Views

Author

Keywords

Comments

a(34) = 17016602 is tentative until the range 16838832..17016601 is fully searched. - Eric W. Weisstein, Mar 22 2018

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 115, p. 40, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B20.
  • F. Le Lionnais, Les Nombres Remarquables, Paris, Hermann, 1983, p. 95, 1983.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 241-242.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 139.

Crossrefs

Cf. A050918 (for the actual primes), A003261, A005849.

Programs

  • PARI
    is(n)=isprime(n<Charles R Greathouse IV, Feb 07 2017

Extensions

a(27) communicated by Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 15 2004
a(28) = 1195203 found by M. Rodenkirch; contributed by Eric W. Weisstein, Nov 29 2005
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
a(30)-a(33) from John Blazek, May 14 2009
a(34) = 17016602 communicated by Eric W. Weisstein, Mar 22 2018

A086661 Numbers k such that k*4^k-1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 8, 14, 23, 63, 107, 132, 428, 530, 1137, 1973, 2000, 7064, 20747, 79574, 113570, 293912, 1993191
Offset: 1

Views

Author

Farideh Firoozbakht, Jul 27 2003

Keywords

Comments

2, 3, 5, 23, 107, 1973, 20747 is the subsequence of prime terms.

Examples

			2 is in the sequence because 2*4^2-1=31 is prime.
3 is in the sequence because 3*4^3-1=191 is prime.
		

References

  • H. Dubner, Generalized Cullen Numbers, J. Rec. Math, 21 (No. 3, 1989).

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[n*4^n-1], Print[n]], {n, 4000}]
    Select[Range[2000],PrimeQ[# 4^#-1]&] (* Harvey P. Dale, Nov 09 2024 *)
  • PARI
    is(n)=ispseudoprime(n*4^n-1) \\ Charles R Greathouse IV, May 22 2017

Extensions

One more term from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Nov 23 2004
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
Prepended first terms 1 and 2 - Pierre CAMI, Jul 21 2014
a(20)-a(21) from Harvey link by Ray Chandler, Apr 10 2016

A058780 Numbers n such that n^2 * 2^n + 1 is prime.

Original entry on oeis.org

1, 2, 3, 4, 21, 30, 33, 57, 100, 142, 144, 150, 198, 225, 304, 513, 782, 858, 3638, 6076, 9297, 11037, 12135, 12876, 30180, 48470
Offset: 1

Views

Author

Robert G. Wilson v, Jan 02 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ n^2*2^n + 1 ], Print[n] ], {n, 1, 5000} ]
  • PARI
    is(n)=ispseudoprime(n^2*2^n+1) \\ Charles R Greathouse IV, May 22 2017

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008

A242176 Numbers k such that k*6^k + 1 is prime.

Original entry on oeis.org

1, 2, 91, 185, 387, 488, 747, 800, 9901, 10115, 12043, 13118, 30981, 51496
Offset: 1

Views

Author

Vincenzo Librandi, May 08 2014

Keywords

Crossrefs

Cf. numbers n such that n*k^n + 1 is prime: A005849 (k=2), A006552 (k=3), A007646 (k=4), this sequence (k=6), A242177 (k=7), A242178 (k=8), A007647 (k=10), A242196 (k=12), A242197 (k=14), A242198 (k=15), A242199 (k=16), A007648 (k=18).

Programs

  • Magma
    [n: n in [0..1500] | IsPrime(n*6^n+1)];
    
  • Mathematica
    Select[Range[1500], PrimeQ[# 6^# + 1] &]
  • PARI
    is(n)=ispseudoprime(n*6^n+1) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(9)-a(14) from Loeh's list (see Links) - Bruno Berselli, May 08 2014

A006552 Numbers k such that k*3^k + 1 is prime.

Original entry on oeis.org

2, 8, 32, 54, 114, 414, 1400, 1850, 2848, 4874, 7268, 19290, 337590, 1183414
Offset: 1

Views

Author

Keywords

References

  • H. Dubner, Generalized Cullen numbers, J. Rec. Math., 21 (No. 3, 1989), 190-191.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
a(14) from Loeh link by Ray Chandler, Apr 10 2016

A050920 Cullen primes: primes of the form n*2^n+1.

Original entry on oeis.org

3, 393050634124102232869567034555427371542904833
Offset: 1

Views

Author

N. J. A. Sloane, Dec 30 1999

Keywords

Comments

The next term is too large to display here, having 1423 digits. See A005849.

Examples

			1 * 2^1 + 1 = 3, which is prime.
141 * 2^141 + 1 = 393050634124102232869567034555427371542904833, which is also prime.
The third Cullen prime is approximately 2.677114856136697933736444 * 10^1422.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B20.

Crossrefs

See A005849 for the corresponding n.
Cf. A002064.

Programs

  • Mathematica
    Select[Table[n * 2^n + 1, {n, 5000}], PrimeQ] (* Harvey P. Dale, Dec 14 2014 *)

Formula

a(n) = A002064(A005849(n)).
Showing 1-10 of 29 results. Next