A063515
Sum of divisors of Woodall (or Riesel) numbers; sigma(A003261(n)); sigma(n*2^n - 1).
Original entry on oeis.org
1, 8, 24, 104, 216, 384, 1080, 2160, 4896, 13656, 32552, 51312, 137160, 287408, 573600, 1999872, 3034368, 4778400, 11098080, 20984560, 49533120, 137218560, 294000768, 417361152, 958698064, 1755253280, 4362821232, 10552800000
Offset: 1
-
j=[]; for(n=1,50,x=sigma(n*2^n-1); j=concat(j,x)); j
-
{ for (n=1, 200, write("b063515.txt", n, " ", sigma(n*2^n - 1)) ) } \\ Harry J. Smith, Aug 24 2009
Original entry on oeis.org
1, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154
Offset: 1
a(4) = 14 = (1, 3, 3, 1) dot (1, 5, -1, 1) = (1, 15, -3, 1).
A056821
Totient of the Woodall numbers (A003261), n*2^n -1.
Original entry on oeis.org
1, 6, 22, 36, 104, 382, 712, 1936, 4320, 6824, 15012, 46992, 79344, 183000, 421008, 480000, 1453784, 4658784, 8877792, 20958480, 38887680, 61284600, 110250264, 388201176, 719023536, 1734432480, 2889658368, 4745378304, 10350643968, 32212254718, 66251144568
Offset: 1
-
[EulerPhi(n*2^n-1): n in [1..30]]; // Vincenzo Librandi, Apr 15 2019
-
a:= n-> numtheory[phi](n*2^n-1):
seq(a(n), n=1..35); # Alois P. Heinz, Apr 15 2019
-
Table[EulerPhi[n 2^n - 1], {n, 1, 35}]
-
a(n) = eulerphi(n*2^n -1); \\ Michel Marcus, Apr 15 2019
A287145
Smallest k such that both of the consecutive Woodall numbers A003261(k) and A003261(k+1) are divisible by A014662(n), the n-th prime p with even order of 2 mod p.
Original entry on oeis.org
4, 13, 64, 89, 83, 188, 433, 701, 449, 342, 1429, 1768, 1889, 2276, 3484, 2423, 5149, 5776, 2069, 1693, 8644, 4793, 9728, 11173, 4237, 13364, 15049, 16108, 16469, 9455, 19501, 22364, 25876, 8929, 3131, 6524, 2311, 36313, 13017, 10114, 13582, 43069, 15962
Offset: 1
11 is the 3rd prime p with even order of 2 mod p. A003261(k)=k*2^k-1 is divisible by 11 for k = 16,48,61,64,65,73,79,100,... The first occurrence of 2 consecutive numbers is 64 and 65, thus a(3) = 64.
-
a = {}; For[p=0, p<=11699, p++; If[!PrimeQ[p], Continue[]]; h=MultiplicativeOrder[2, p]; If[!EvenQ[h], Continue[]]; n=(h/2+1)*p-2; a = AppendTo[a, n]]; a
Original entry on oeis.org
0, 2, 8, 24, 64, 160, 384, 896, 2048, 4608, 10240, 22528, 49152, 106496, 229376, 491520, 1048576, 2228224, 4718592, 9961472, 20971520, 44040192, 92274688, 192937984, 402653184, 838860800, 1744830464, 3623878656, 7516192768, 15569256448, 32212254720
Offset: 0
- Arno Berger and Theodore P. Hill. An Introduction to Benford's Law. Princeton University Press, 2015.
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.29)
- Indranil Ghosh, Table of n, a(n) for n = 0..1000 (first 501 terms from T. D. Noe)
- C. Banderier and S. Schwer, Why Delannoy numbers?, arXiv:math/0411128 [math.CO], 2004.
- David G. Glynn, The permanent of a square matrix, European Journal of Combinatorics, Volume 31, Issue 7, 2010, pp. 1887-1891.
- A. F. Horadam, Oresme numbers, Fib. Quart., 12 (1974), 267-271.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Eric Weisstein's World of Mathematics, Cube-Connected Cycle Graph.
- Eric Weisstein's World of Mathematics, Graph Circumference.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
- Index entries for sequences related to Benford's law
-
a036289 n = n * 2 ^ n
a036289_list = zipWith (*) [0..] a000079_list
-- Reinhard Zumkeller, Mar 05 2012
-
g:=1/(1-2*z): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)*n, n=0..34); # Zerinvary Lajos, Jan 11 2009
-
Table[n*2^n, {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2010 *)
LinearRecurrence[{4,-4},{0,2},40] (* Harvey P. Dale, Mar 02 2018 *)
-
a(n)=n<Charles R Greathouse IV, Jun 15 2011
-
a=lambda n: n<Indranil Ghosh, Jan 05 2017
A002064
Cullen numbers: a(n) = n*2^n + 1.
Original entry on oeis.org
1, 3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, 229377, 491521, 1048577, 2228225, 4718593, 9961473, 20971521, 44040193, 92274689, 192937985, 402653185, 838860801, 1744830465, 3623878657, 7516192769, 15569256449, 32212254721, 66571993089
Offset: 0
G.f. = 1 + 3*x + 9*x^2 + 25*x^3 + 65*x^4 + 161*x^5 + 385*x^6 + 897*x^7 + ... - _Michael Somos_, Jul 18 2018
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- R. K. Guy, Unsolved Problems in Number Theory, B20.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 240-242.
- W. Sierpiński, Elementary Theory of Numbers. Państ. Wydaw. Nauk., Warsaw, 1964, p. 346.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=0..300
- Ray Ballinger, Cullen Primes: Definition and Status.
- Attila Bérczes, István Pink, and Paul Thomas Young, Cullen numbers and Woodall numbers in generalized Fibonacci sequences, J. Num. Theor. (2024) Vol. 262, 86-102.
- Yuri Bilu, Diego Marques, and Alain Togbé, Generalized Cullen numbers in linear recurrence sequences, Journal of Number Theory, Vol. 202 (2019), pp. 412-425; arXiv preprint, arXiv:1806.09441 [math.NT], 2018.
- Daniel Birmajer, Juan B. Gil, David S. Kenepp, and Michael D. Weiner, Restricted generating trees for weak orderings, arXiv:2108.04302 [math.CO], 2021.
- C. K. Caldwell, The Top Twenty: Cullen Primes.
- James Cullen, Question 15897, Educational Times, Vol. 58 (December 1905), p. 534.
- Orhan Eren and Yüksel Soykan, Gaussian Generalized Woodall Numbers, Arch. Current Res. Int'l (2023) Vol. 23, Iss. 8, Art. No. ACRI.108618, 48-68. See p. 50.
- Orhan Eren and Yüksel Soykan, On Dual Hyperbolic Generalized Woodall Numbers, Archives Current Res. Int'l (2024) Vol. 24, Iss. 11, Art. No. ACRI.126420, 398-423. See p. 401.
- Jon Grantham and Hester Graves, The abc Conjecture Implies That Only Finitely Many Cullen Numbers Are Repunits, arXiv:2009.04052 [math.NT], 2020.
- José María Grau and Florian Luca, Cullen numbers with the Lehmer property, Proceedings of the American Mathematical Society, Vol. 140, No. 1 (2012), pp. 129-134; arXiv preprint, arXiv:1103.3578 [math.NT], Mar 18 2011.
- Paul Leyland, Factors of Cullen and Woodall numbers.
- Paul Leyland, Generalized Cullen and Woodall numbers.
- Diego Marques, On Generalized Cullen and Woodall Numbers That are Also Fibonacci Numbers, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.4.
- Hisanori Mishima, Factorizations of many number sequences, Cullen numbers (n = 1 to 100), (n = 101 to 200), (n = 201 to 300), (n = 301 to 323).
- Simon Plouffe, Approximations de Séries Génératrices et Quelques Conjectures, Dissertation, Université du Québec à Montréal, 1992.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Wacław Sierpiński, Elementary Theory of Numbers, Warszawa 1964.
- Amelia Carolina Sparavigna, On the generalized sums of Mersenne, Fermat, Cullen and Woodall Numbers, Politecnico di Torino (Italy, 2019).
- Amelia Carolina Sparavigna, Composition Operations of Generalized Entropies Applied to the Study of Numbers, International Journal of Sciences, Vol. 8, No. 4 (2019), pp. 87-92.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences, Vol. 8, No. 10 (2019).
- Eric Weisstein's World of Mathematics, Cullen Number.
- Wikipedia, Cullen number.
- Index entries for linear recurrences with constant coefficients, signature (5,-8,4).
A188385 gives the highest prime exponent in n^n.
-
a002064 n = n * 2 ^ n + 1
a002064_list = 1 : 3 : (map (+ 1) $ zipWith (-) (tail xs) xs)
where xs = map (* 4) a002064_list
-- Reinhard Zumkeller, Mar 16 2013
-
[n*2^n + 1: n in [0..40]]; // Vincenzo Librandi, May 07 2015
-
A002064:=-(1-2*z+2*z**2)/((z-1)*(-1+2*z)**2); # conjectured by Simon Plouffe in his 1992 dissertation
-
Table[n*2^n+1,{n,0,2*4!}] (* Vladimir Joseph Stephan Orlovsky, Apr 25 2010 *)
LinearRecurrence[{5,-8,4},{1,3,9},51] (* Harvey P. Dale, Oct 13 2011 *)
CoefficientList[Series[(1 - 2 x + 2 x^2)/((1 - x) (2 x - 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
-
A002064(n)=n*2^n+1 \\ M. F. Hasler, Oct 31 2012
A076336
(Provable) Sierpiński numbers: odd numbers n such that for all k >= 1 the numbers n*2^k + 1 are composite.
Original entry on oeis.org
78557, 271129, 271577, 322523, 327739, 482719, 575041, 603713, 903983, 934909, 965431, 1259779, 1290677, 1518781, 1624097, 1639459, 1777613, 2131043, 2131099, 2191531, 2510177, 2541601, 2576089, 2931767, 2931991, 3083723, 3098059, 3555593, 3608251
Offset: 1
- R. K. Guy, Unsolved Problems in Number Theory, Section B21.
- C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 420.
- Paulo Ribenboim, The Book of Prime Number Records, 2nd. ed., 1989, p. 282.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 237-238.
- T. D. Noe and Arkadiusz Wesolowski, Table of n, a(n) for n = 1..15000 (T. D. Noe supplied 13394 terms which came from McLean. a(1064), a(7053), and a(13397)-a(15000) from Arkadiusz Wesolowski.)
- Chris Caldwell, Riesel number
- Chris Caldwell, Sierpinski number
- Michael Filaseta, quoted by T. Ordowski, Re: Is it true? SeqFan mailing list, Jul 12 2022
- Michael Filaseta, Jacob Juillerat, and Thomas Luckner, Consecutive primes which are widely digitally delicate and Brier numbers, arXiv:2209.10646 [math.NT], 2022.
- Carrie E. Finch-Smith and R. Scottfield Groth, Arbitrarily Long Sequences of Sierpiński Numbers that are the Sum of a Sierpiński Number and a Mersenne Number, Journal of Integer Sequences, Vol. 28 (2025), Article 25.2.4. See p. 22.
- Yves Gallot, A search for some small Brier numbers, 2000.
- Dan Ismailescu and Peter Seho Park, On Pairwise Intersections of the Fibonacci, Sierpiński, and Riesel Sequences, Journal of Integer Sequences, 16 (2013), #13.9.8.
- Anatoly S. Izotov, A Note on Sierpinski Numbers, Fibonacci Quarterly (1995), pp. 206-207.
- G. Jaeschke, On the Smallest k Such that All k*2^N + 1 are Composite, Mathematics of Computation, Vol. 40, No. 161 (Jan., 1983), pp. 381-384.
- J. McLean, Searching for large Sierpinski numbers [Cached copy]
- J. McLean, Brier Numbers [Cached copy]
- Don Reble, Proofs concerning S3 and S4
- Carlos Rivera, Problem 29. Brier numbers, The Prime Puzzles and Problems Connection.
- Payam Samidoost, Dual Sierpinski problem search page [Broken link?]
- Payam Samidoost, Dual Sierpinski problem search page [Cached copy]
- Payam Samidoost, 4847 [Broken link?]
- Payam Samidoost, 4847 [Cached copy]
- W. Sierpiński, Sur un problème concernant les nombres k * 2^n + 1, Elem. Math., 15 (1960), pp. 73-74.
- Seventeen or Bust, A Distributed Attack on the Sierpinski Problem
- N. J. A. Sloane, A Nasty Surprise in a Sequence and Other OEIS Stories, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; Slides [Mentions this sequence]
- Jeremiah T. Southwick, Two Inquiries Related to the Digits of Prime Numbers, Ph. D. Dissertation, University of South Carolina (2020).
- Eric Weisstein's World of Mathematics, Sierpiński Number of the Second Kind
- Wikipedia, Sierpiński number.
A002234
Numbers k such that the Woodall number k*2^k - 1 is prime.
Original entry on oeis.org
2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, 462, 512, 751, 822, 5312, 7755, 9531, 12379, 15822, 18885, 22971, 23005, 98726, 143018, 151023, 667071, 1195203, 1268979, 1467763, 2013992, 2367906, 3752948, 17016602
Offset: 1
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 115, p. 40, Ellipses, Paris 2008.
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B20.
- F. Le Lionnais, Les Nombres Remarquables, Paris, Hermann, 1983, p. 95, 1983.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 241-242.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 139.
- Ray Ballinger, Woodall Primes: Definition and Status.
- Ray Ballinger and Wilfrid Keller, Woodall numbers.
- C. K. Caldwell, Woodall Numbers.
- J. DeMaio, Generalized Woodall Numbers.
- Brady Haran and Matt Parker, 383 is cool, Numberphile video (2017).
- R. Ondrejka, The Top Ten: a Catalogue of Primal Configurations.
- PrimeGrid, PrimeGrid Primes: Subproject: (WOO) Woodall Prime Search.
- Matt Parker and Brady Haran, 383 and Woodall Primes, Numberphile video (2017).
- H. Riesel, Lucasian criteria for the primality of N=h.2^n-1, Math. Comp., 23 (1969), 869-875.
- Eric Weisstein's World of Mathematics, Woodall Number.
- Eric Weisstein's World of Mathematics, Integer Sequence Primes.
a(27) communicated by Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 15 2004
a(28) = 1195203 found by M. Rodenkirch; contributed by
Eric W. Weisstein, Nov 29 2005
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
A076337
Riesel numbers: odd numbers n such that for all k >= 1 the numbers n*2^k - 1 are composite.
Original entry on oeis.org
- R. K. Guy, Unsolved Problems in Number Theory, Section B21.
- Paulo Ribenboim, The Book of Prime Number Records, 2nd ed., 1989, p. 282.
- Ray Ballinger and Wilfrid Keller, The Riesel Problem: Definition and Status [http://www.prothsearch.com/rieselprob.html].
- Chris Caldwell, Riesel Numbers.
- Chris Caldwell, Sierpinski Numbers.
- Yves Gallot, A search for some small Brier numbers, 2000.
- Dan Ismailescu and Peter Seho Park, On Pairwise Intersections of the Fibonacci, Sierpiński, and Riesel Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.9.8.
- Tanya Khovanova, Non Recursions.
- Joe McLean, Brier Numbers.
- Hans Riesel, Some large prime numbers. Translated from the Swedish original (Några stora primtal, Elementa 39 (1956), pp. 258-260) by Lars Blomberg.
- Carlos Rivera, Problem 29. Brier numbers, The Prime Puzzles and Problems Connection.
- Eric Weisstein's World of Mathematics, Riesel numbers.
- Index entries for one-term sequences.
Normally we require at least four terms but we will make an exception for this sequence in view of its importance. -
N. J. A. Sloane, Nov 07 2002. See
A101036 for the most likely extension.
Definition corrected ("odd" added) by
M. F. Hasler, Aug 23 2020
A076335
Brier numbers: numbers that are both Riesel and Sierpiński [Sierpinski], or odd n such that for all k >= 1 the numbers n*2^k + 1 and n*2^k - 1 are composite.
Original entry on oeis.org
3316923598096294713661, 10439679896374780276373, 11615103277955704975673, 12607110588854501953787, 17855036657007596110949, 21444598169181578466233, 28960674973436106391349, 32099522445515872473461, 32904995562220857573541
Offset: 1
- D. Baczkowski, J. Eitner, C. E. Finch, B. Suminski, and M. Kozek, Polygonal, Sierpinski, and Riesel numbers, Journal of Integer Sequences, 2015 Vol 18. #15.8.1.
- Chris Caldwell, The Prime Glossary, Riesel number
- Chris Caldwell, The Prime Glossary, Sierpinski number
- Christophe Clavier, 14 new Brier numbers
- Fred Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math. Comput. 29 (1975), pp. 79-81.
- P. Erdős, On integers of the form 2^k + p and some related problems, Summa Brasil. Math. 2 (1950), pp. 113-123.
- M. Filaseta et al., On Powers Associated with Sierpiński Numbers, Riesel Numbers and Polignac’s Conjecture, Journal of Number Theory, Volume 128, Issue 7, July 2008, Pages 1916-1940. (See pages 9-10)
- Michael Filaseta and Jacob Juillerat, Consecutive primes which are widely digitally delicate, arXiv:2101.08898 [math.NT], 2021.
- Michael Filaseta, Jacob Juillerat, and Thomas Luckner, Consecutive primes which are widely digitally delicate and Brier numbers, arXiv:2209.10646 [math.NT], 2022. See also Integers (2023) Vol. 23, #A75.
- Yves Gallot, A search for some small Brier numbers, 2000.
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 6992565235279559197457863
- Dan Ismailescu and Peter Seho Park, On Pairwise Intersections of the Fibonacci, Sierpiński, and Riesel Sequences, Journal of Integer Sequences, 16 (2013), #13.9.8.
- Joe McLean, Brier Numbers [Cached copy]
- Carlos Rivera, Problem 29. Brier numbers, The Prime Puzzles and Problems Connection.
- Carlos Rivera, Problem 58. Brier numbers revisited, The Prime Puzzles and Problems Connection.
- Carlos Rivera, Problem 68. More on Brier numbers, The Prime Puzzles and Problems Connection.
- Carlos Rivera, See here for latest information about progress on this sequence
- Eric Weisstein's World of Mathematics, Brier Number
Cf.
A194591,
A194600,
A194603,
A194606,
A194607,
A194608,
A194635,
A194636,
A194637,
A194638,
A194639,
A076336,
A076337,
A040081,
A040076,
A103963,
A103964,
A038699,
A050921,
A064699,
A052333,
A003261,
A364412,
A364413.
A234594 is the old, incorrect version.
Many terms reported in Problem 29 from "The Prime Problems & Puzzles Connection" from
Carlos Rivera, May 30 2010
Showing 1-10 of 43 results.
Comments