cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 104 results. Next

A005843 The nonnegative even numbers: a(n) = 2n.

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120
Offset: 0

Views

Author

Keywords

Comments

-2, -4, -6, -8, -10, -12, -14, ... are the trivial zeros of the Riemann zeta function. - Vivek Suri (vsuri(AT)jhu.edu), Jan 24 2008
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-2) is the number of 2-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
A134452(a(n)) = 0; A134451(a(n)) = 2 for n > 0. - Reinhard Zumkeller, Oct 27 2007
Omitting the initial zero gives the number of prime divisors with multiplicity of product of terms of n-th row of A077553. - Ray Chandler, Aug 21 2003
A059841(a(n))=1, A000035(a(n))=0. - Reinhard Zumkeller, Sep 29 2008
(APSO) Alternating partial sums of (a-b+c-d+e-f+g...) = (a+b+c+d+e+f+g...) - 2*(b+d+f...), it appears that APSO(A005843) = A052928 = A002378 - 2*(A116471), with A116471=2*A008794. - Eric Desbiaux, Oct 28 2008
A056753(a(n)) = 1. - Reinhard Zumkeller, Aug 23 2009
Twice the nonnegative numbers. - Juri-Stepan Gerasimov, Dec 12 2009
The number of hydrogen atoms in straight-chain (C(n)H(2n+2)), branched (C(n)H(2n+2), n > 3), and cyclic, n-carbon alkanes (C(n)H(2n), n > 2). - Paul Muljadi, Feb 18 2010
For n >= 1; a(n) = the smallest numbers m with the number of steps n of iterations of {r - (smallest prime divisor of r)} needed to reach 0 starting at r = m. See A175126 and A175127. A175126(a(n)) = A175126(A175127(n)) = n. Example (a(4)=8): 8-2=6, 6-2=4, 4-2=2, 2-2=0; iterations has 4 steps and number 8 is the smallest number with such result. - Jaroslav Krizek, Feb 15 2010
For n >= 1, a(n) = numbers k such that arithmetic mean of the first k positive integers is not integer. A040001(a(n)) > 1. See A145051 and A040001. - Jaroslav Krizek, May 28 2010
Union of A179082 and A179083. - Reinhard Zumkeller, Jun 28 2010
a(k) is the (Moore lower bound on and the) order of the (k,4)-cage: the smallest k-regular graph having girth four: the complete bipartite graph with k vertices in each part. - Jason Kimberley, Oct 30 2011
For n > 0: A048272(a(n)) <= 0. - Reinhard Zumkeller, Jan 21 2012
Let n be the number of pancakes that have to be divided equally between n+1 children. a(n) is the minimal number of radial cuts needed to accomplish the task. - Ivan N. Ianakiev, Sep 18 2013
For n > 0, a(n) is the largest number k such that (k!-n)/(k-n) is an integer. - Derek Orr, Jul 02 2014
a(n) when n > 2 is also the number of permutations simultaneously avoiding 213, 231 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl Aug 07 2014
It appears that for n > 2, a(n) = A020482(n) + A002373(n), where all sequences are infinite. This is consistent with Goldbach's conjecture, which states that every even number > 2 can be expressed as the sum of two prime numbers. - Bob Selcoe, Mar 08 2015
Number of partitions of 4n into exactly 2 parts. - Colin Barker, Mar 23 2015
Number of neighbors in von Neumann neighborhood. - Dmitry Zaitsev, Nov 30 2015
Unique solution b( ) of the complementary equation a(n) = a(n-1)^2 - a(n-2)*b(n-1), where a(0) = 1, a(1) = 3, and a( ) and b( ) are increasing complementary sequences. - Clark Kimberling, Nov 21 2017
Also the maximum number of non-attacking bishops on an (n+1) X (n+1) board (n>0). (Cf. A000027 for rooks and queens (n>3), A008794 for kings or A030978 for knights.) - Martin Renner, Jan 26 2020
Integer k is even positive iff phi(2k) > phi(k), where phi is Euler's totient (A000010) [see reference De Koninck & Mercier]. - Bernard Schott, Dec 10 2020
Number of 3-permutations of n elements avoiding the patterns 132, 213, 312 and also number of 3-permutations avoiding the patterns 213, 231, 321. See Bonichon and Sun. - Michel Marcus, Aug 20 2022
a(n) gives the y-value of the integral solution (x,y) of the Pellian equation x^2 - (n^2 + 1)*y^2 = 1. The x-value is given by 2*n^2 + 1 (see Tattersall). - Stefano Spezia, Jul 24 2025

Examples

			G.f. = 2*x + 4*x^2 + 6*x^3 + 8*x^4 + 10*x^5 + 12*x^6 + 14*x^7 + 16*x^8 + ...
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 28.
  • J.-M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 529a pp. 71 and 257, Ellipses, 2004, Paris.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 256.

Crossrefs

a(n)=2*A001477(n). - Juri-Stepan Gerasimov, Dec 12 2009
Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), this sequence (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Oct 30 2011
Cf. A231200 (boustrophedon transform).

Programs

Formula

G.f.: 2*x/(1-x)^2.
E.g.f.: 2*x*exp(x). - Geoffrey Critzer, Aug 25 2012
G.f. with interpolated zeros: 2x^2/((1-x)^2 * (1+x)^2); e.g.f. with interpolated zeros: x*sinh(x). - Geoffrey Critzer, Aug 25 2012
Inverse binomial transform of A036289, n*2^n. - Joshua Zucker, Jan 13 2006
a(0) = 0, a(1) = 2, a(n) = 2a(n-1) - a(n-2). - Jaume Oliver Lafont, May 07 2008
a(n) = Sum_{k=1..n} floor(6n/4^k + 1/2). - Vladimir Shevelev, Jun 04 2009
a(n) = A034856(n+1) - A000124(n) = A000217(n) + A005408(n) - A000124(n) = A005408(n) - 1. - Jaroslav Krizek, Sep 05 2009
a(n) = Sum_{k>=0} A030308(n,k)*A000079(k+1). - Philippe Deléham, Oct 17 2011
Digit sequence 22 read in base n-1. - Jason Kimberley, Oct 30 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Dec 23 2011
a(n) = 2*n = Product_{k=1..2*n-1} 2*sin(Pi*k/(2*n)), n >= 0 (undefined product := 1). See an Oct 09 2013 formula contribution in A000027 with a reference. - Wolfdieter Lang, Oct 10 2013
From Ilya Gutkovskiy, Aug 19 2016: (Start)
Convolution of A007395 and A057427.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/2 = (1/2)*A002162 = (1/10)*A016655. (End)
From Bernard Schott, Dec 10 2020: (Start)
Sum_{n>=1} 1/a(n)^2 = Pi^2/24 = A222171.
Sum_{n>=1} (-1)^(n+1)/a(n)^2 = Pi^2/48 = A245058. (End)

A002064 Cullen numbers: a(n) = n*2^n + 1.

Original entry on oeis.org

1, 3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, 229377, 491521, 1048577, 2228225, 4718593, 9961473, 20971521, 44040193, 92274689, 192937985, 402653185, 838860801, 1744830465, 3623878657, 7516192769, 15569256449, 32212254721, 66571993089
Offset: 0

Views

Author

Keywords

Comments

Binomial transform is A084859. Inverse binomial transform is A004277. - Paul Barry, Jun 12 2003
Let A be the Hessenberg matrix of order n defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1] =-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= (-1)^(n-1)*coeff(charpoly(A,x),x). - Milan Janjic, Jan 26 2010
Indices of primes are listed in A005849. - M. F. Hasler, Jan 18 2015
Add the list of fractions beginning with 1/2 + 3/4 + 7/8 + ... + (2^n - 1)/2^n and take the sums pairwise from left to right. For 1/2 + 3/4 = 5/4, 5 + 4 = 9 = a(2); for 5/4 + 7/8 = 17/8, 17 + 8 = 25 = a(3); for 17/8 + 15/16 = 49/16, 49 + 16 = 65 = a(4); for 49/16 + 31/32 = 129/32, 129 + 32 = 161 = a(5). For each pairwise sum a/b, a + b = n*2^(n+1). - J. M. Bergot, May 06 2015
Number of divisors of (2^n)^(2^n). - Gus Wiseman, May 03 2021
Named after the Irish Jesuit priest James Cullen (1867-1933), who checked the primality of the terms up to n=100. - Amiram Eldar, Jun 05 2021

Examples

			G.f. = 1 + 3*x + 9*x^2 + 25*x^3 + 65*x^4 + 161*x^5 + 385*x^6 + 897*x^7 + ... - _Michael Somos_, Jul 18 2018
		

References

  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • R. K. Guy, Unsolved Problems in Number Theory, B20.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 240-242.
  • W. Sierpiński, Elementary Theory of Numbers. Państ. Wydaw. Nauk., Warsaw, 1964, p. 346.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Diagonal k = n + 1 of A046688.
A000005 counts divisors of n.
A000312 = n^n.
A002109 gives hyperfactorials (sigma: A260146, omega: A303281).
A057156 = (2^n)^(2^n).
A062319 counts divisors of n^n.
A173339 lists positions of squares in A062319.
A188385 gives the highest prime exponent in n^n.
A249784 counts divisors of n^n^n.

Programs

Formula

a(n) = 4a(n-1) - 4a(n-2) + 1. - Paul Barry, Jun 12 2003
a(n) = sum of row (n+1) of triangle A130197. Example: a(3) = 25 = (12 + 8 + 4 + 1), row 4 of A130197. - Gary W. Adamson, May 16 2007
Row sums of triangle A134081. - Gary W. Adamson, Oct 07 2007
Equals row sums of triangle A143038. - Gary W. Adamson, Jul 18 2008
Equals row sums of triangle A156708. - Gary W. Adamson, Feb 13 2009
G.f.: -(1-2*x+2*x^2)/((-1+x)*(2*x-1)^2). a(n) = A001787(n+1)+1-A000079(n). - R. J. Mathar, Nov 16 2007
a(n) = 1 + 2^(n + log_2(n)) ~ 1 + A000079(n+A004257(n)). a(n) ~ A000051(n+A004257(n)). - Jonathan Vos Post, Jul 20 2008
a(0)=1, a(1)=3, a(2)=9, a(n) = 5*a(n-1)-8*a(n-2)+4*a(n-3). - Harvey P. Dale, Oct 13 2011
a(n) = A036289(n) + 1 = A003261(n) + 2. - Reinhard Zumkeller, Mar 16 2013
E.g.f.: 2*x*exp(2*x) + exp(x). - Robert Israel, Dec 12 2014
a(n) = 2^n * A000325(n) = 4^n * A186947(-n) for all n in Z. - Michael Somos, Jul 18 2018
a(n) = Sum_{i=0..n-1} a(i) + A000325(n+1). - Ivan N. Ianakiev, Aug 07 2019
a(n) = sigma((2^n)^(2^n)) = A000005(A057156(n)) = A062319(2^n). - Gus Wiseman, May 03 2021
Sum_{n>=0} 1/a(n) = A340841. - Amiram Eldar, Jun 05 2021

Extensions

Edited by M. F. Hasler, Oct 31 2012

A003261 Woodall (or Riesel) numbers: n*2^n - 1.

Original entry on oeis.org

1, 7, 23, 63, 159, 383, 895, 2047, 4607, 10239, 22527, 49151, 106495, 229375, 491519, 1048575, 2228223, 4718591, 9961471, 20971519, 44040191, 92274687, 192937983, 402653183, 838860799, 1744830463, 3623878655, 7516192767, 15569256447, 32212254719, 66571993087
Offset: 1

Views

Author

Keywords

Comments

For n>1, a(n) is base at which zero is reached for the function "write f(j) in base j, read as base j+1 and then subtract 1 to give f(j+1)" starting from f(n) = n^2 - 1. - Henry Bottomley, Aug 06 2000
Sequence corresponds also to the maximum chain length of the classic puzzle whereby, under agreed commercial terms, an asset of unringed golden chain, when judiciously fragmented into as few as n pieces and n-1 opened links (through n-1 cuts), might be used to settle debt sequentially, with a golden link covering for unit cost. Here beside the n-1 opened links, the n fragmented pieces have lengths n, 2*n, 4*n, ..., 2^(n-1)*n. For instance, the chain of original length a(5)=159, if segregated by 4 cuts into 5+1+10+1+20+1+40+1+80, may be used to pay sequentially, i.e., a link-cost at a time, for an equivalent cost up to 159 links, to the same creditor. - Lekraj Beedassy, Feb 06 2003

Examples

			G.f. = x + 7*x^2 + 23*x^3 + 63*x^4 + 159*x^5 + 383*x^6 + 895*x^7 + ... - _Michael Somos_, Nov 04 2018
		

References

  • A. Brousseau, Number Theory Tables. Fibonacci Association, San Jose, CA, 1973, p. 159.
  • K. R. Bhutani and A. B. Levin, "The Problem of Sawing a Chain", Journal of Recreational Mathematics 2002-3 31(1) 32-35.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • M. Gardner, Martin Gardner's Sixth Book of Mathematical Diversions from Scientific American, "Gold Links", Problem 4, pp. 50-51; 57-58, University of Chicago Press, 1983.
  • O. O'Shea, Mathematical Brainteasers with Surprising Solutions, Problem 76, pp. 183-185, Prometheus Books, Guilford, Connecticut, 2020.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 241.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A036289(n) - 1 = A002064(n) - 2.
Cf. A133653.

Programs

Formula

G.f.: x*(-1-2*x+4*x^2) / ( (x-1)*(-1+2*x)^2 ). - Simon Plouffe in his 1992 dissertation
Binomial transform of A133653 and double binomial transform of [1, 5, -1, 1, -1, 1, ...]. - Gary W. Adamson, Sep 19 2007
a(n) = -(2)^n * A006127(-n) for all n in Z. - Michael Somos, Nov 04 2018
E.g.f.: 1 + exp(x)*(2*exp(x)*x - 1). - Stefano Spezia, Nov 24 2024

A128796 a(n) = n*(n-1)*2^n.

Original entry on oeis.org

0, 0, 8, 48, 192, 640, 1920, 5376, 14336, 36864, 92160, 225280, 540672, 1277952, 2981888, 6881280, 15728640, 35651584, 80216064, 179306496, 398458880, 880803840, 1937768448, 4244635648, 9261023232, 20132659200, 43620761600, 94220845056, 202937204736, 435939180544
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 07 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^2-n)*2^n: n in [0..30]]; // Vincenzo Librandi, Feb 10 2013
    
  • Mathematica
    CoefficientList[Series[8 x^2/(1 - 2 x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2013 *)
  • PARI
    a(n)=n*(n-1)<Charles R Greathouse IV, Sep 24 2015

Formula

G.f.: 8*x^2/(1 - 2*x)^3. - Vincenzo Librandi, Feb 10 2013
a(n) = 8*A001788(n-1). - R. J. Mathar, Apr 26 2015
From Amiram Eldar, Jul 11 2020: (Start)
Sum_{n>=2} 1/a(n) = (1 - log(2))/2.
Sum_{n>=2} (-1)^n/a(n) = (3*log(3/2) - 1)/2. (End)
E.g.f.: 4*exp(2*x)*x^2. - Stefano Spezia, Sep 02 2024

A036799 a(n) = 2 + 2^(n+1)*(n-1).

Original entry on oeis.org

0, 2, 10, 34, 98, 258, 642, 1538, 3586, 8194, 18434, 40962, 90114, 196610, 425986, 917506, 1966082, 4194306, 8912898, 18874370, 39845890, 83886082, 176160770, 369098754, 771751938, 1610612738, 3355443202, 6979321858, 14495514626, 30064771074, 62277025794
Offset: 0

Views

Author

Keywords

Comments

This sequence is a part of a class of sequences of the type: a(n) = Sum_{i=0..n} (C^i)*(i^k). This sequence has C=2, k=1. Sequence A036800 has C=2, k=2. Suppose C >= 2, k >= 1 are integers. What is the general closed form for a(n)? - Ctibor O. Zizka, Feb 07 2008
Partial sums of A036289. - Vladimir Joseph Stephan Orlovsky, Jul 09 2011
a(n) is the number of swaps needed in the worst case, when successively inserting 2^(n+1) - 1 keys into an initially empty binary heap (thus creating a tree with n+1 full levels). - Rudy van Vliet, Nov 09 2015
a(n) is also the total path length of the complete binary tree of height n, with nodes at depths 0,...,n. Total path length is defined to be the sum of depths over all nodes. - F. Skerman, Jul 02 2017
For n >= 1, every number greater than or equal to a(n-1) can be written as a sum of (not necessarily distinct) numbers of the form 2^n - 2^k with 0 <= k < n. However, a(n-1) - 1 cannot be written in this way. See problem N1 from the 2014 International Mathematics Olympiad Shortlist. - Dylan Nelson, Jun 02 2023

References

  • M. Petkovsek et al., A=B, Peters, 1996, p. 97.

Crossrefs

Programs

Formula

a(n) = (n-1) * 2^(n+1) + 2.
a(n) = 2 * A000337(n).
a(n) = Sum_{k=1..n} k*2^k. - Benoit Cloitre, Oct 25 2002
G.f.: 2*x/((1-x)*(1-2*x)^2). - Colin Barker, Apr 30 2012
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3) for n > 2. - Wesley Ivan Hurt, Nov 12 2015
a(n) = Sum_{k=0..n} Sum_{i=0..n} k * binomial(k,i). - Wesley Ivan Hurt, Sep 21 2017
E.g.f.: 2*exp(x) - 2*(1-2*x)*exp(2*x). - G. C. Greubel, Mar 29 2021

A066524 a(n) = n*(2^n - 1).

Original entry on oeis.org

0, 1, 6, 21, 60, 155, 378, 889, 2040, 4599, 10230, 22517, 49140, 106483, 229362, 491505, 1048560, 2228207, 4718574, 9961453, 20971500, 44040171, 92274666, 192937961, 402653160, 838860775, 1744830438, 3623878629, 7516192740, 15569256419, 32212254690
Offset: 0

Views

Author

Henry Bottomley, Jan 08 2002

Keywords

Comments

a(n)/2^n is the expected value of the cardinality of the generalized union of n randomly selected (with replacement) subsets of [n] where the probability of selection is equal for all subsets. - Geoffrey Critzer, May 18 2009
Form a triangle in which interior members T(i,j) = T(i-1,j-1) + T(i-1,j). The exterior members are given by 1,2,3,...,2*n-1: T(1,1) = n, T(2,1) = n-1, T(3,1) = n-2, ..., T(n,1) = 1 and T(2,2) = n + 1, T(3,3) = n + 2, ..., T(n,n) = 2*n - 1. The sum of all members will reproduce this sequence. For example, with n = 4 the exterior members are 1 to 7: row(1) = 4; row(2) = 3,5; row(3) = 2,8,6; row(4) = 1,10,14,7. The sum of all these members is 60, the fourth term in the sequence. - J. M. Bergot, Oct 16 2012

Examples

			a(4) = 4*(2^4 - 1) = 4*15 = 60.
		

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) + 2^n = A000225(n) * A001477(n) = A036289(n) - A001477(n).
G.f.: x*(1 - 2*x^2)/((1 - x)*(1 - 2*x))^2.
a(n) = n * Sum_{j = 1..n} binomial(n,j), n >= 0. - Zerinvary Lajos, May 10 2007
Row sums of triangles A132751. - Gary W. Adamson, Aug 28 2007
E.g.f.: x*(2*exp(2*x) - exp(x)). From an earlier rewritten comment. - Wolfdieter Lang, Feb 16 2016
Sum_{n>=1} 1/a(n) = A335764. - Amiram Eldar, Jun 23 2020

A128960 a(n) = (n^3 - n)*2^n.

Original entry on oeis.org

0, 24, 192, 960, 3840, 13440, 43008, 129024, 368640, 1013760, 2703360, 7028736, 17891328, 44728320, 110100480, 267386880, 641728512, 1524105216, 3586129920, 8367636480, 19377684480, 44568674304, 101871255552, 231525580800, 523449139200, 1177760563200, 2638183661568
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3-n)*2^n: n in [1..25]]; /* or */ I:=[0,24,192,960]; [n le 4 select I[n] else 8*Self(n-1)-24*Self(n-2)+32*Self(n-3)-16*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
    
  • Mathematica
    CoefficientList[Series[24 x/(1 - 2 x)^4, {x, 0, 30}], x] (* or *) LinearRecurrence[{8, -24, 32, -16}, {0, 24, 192, 960}, 30] (* Vincenzo Librandi, Feb 12 2013 *)
  • PARI
    a(n)=(n^3-n)<Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: 24*x^2/(1-2*x)^4. - Vincenzo Librandi, Feb 12 2013
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4). - Vincenzo Librandi, Feb 12 2013
From Amiram Eldar, Oct 02 2022: (Start)
a(n) = A007531(n+1)*A000079(n).
Sum_{n>=2} 1/a(n) = (2*log(2)-1)/8.
Sum_{n>=2} (-1)^n/a(n) = (3/2)^2*log(3/2) - 7/8. (End)

Extensions

Offset corrected by Mohammad K. Azarian, Nov 19 2008

A129002 a(n) = (n^3 + n^2)*2^n.

Original entry on oeis.org

4, 48, 288, 1280, 4800, 16128, 50176, 147456, 414720, 1126400, 2973696, 7667712, 19382272, 48168960, 117964800, 285212672, 681836544, 1613758464, 3785359360, 8808038400, 20346568704, 46690992128, 106501767168, 241591910400
Offset: 1

Views

Author

Mohammad K. Azarian, May 01 2007

Keywords

Comments

Number of paths along four vertices contained within the n+1 dimensional hypercube graph. - Ben Eck, Mar 30 2022

Crossrefs

Programs

  • Magma
    [(n^3+n^2)*2^n: n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
    
  • Magma
    I:=[4, 48, 288, 1280]; [n le 4 select I[n] else 8*Self(n-1)-24*Self(n-2)+32*Self(n-3)-16*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
    
  • Mathematica
    CoefficientList[Series[4 (1 + 4 x)/(1 - 2 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 12 2013 *)
    LinearRecurrence[{8,-24,32,-16},{4,48,288,1280},30] (* Harvey P. Dale, Aug 21 2021 *)
  • PARI
    a(n)=(n^3+n^2)<Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: 4x*(1+4*x)/(1-2*x)^4. - Vincenzo Librandi, Feb 12 2013
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4). - Vincenzo Librandi, Feb 12 2013
Sum_{n>=1} 1/a(n) = Pi^2/12 - 1 + log(2) - log(2)^2/2. - Amiram Eldar, Aug 05 2020

A057156 Number of functions from {0,1}^n to {0,1}^n.

Original entry on oeis.org

1, 4, 256, 16777216, 18446744073709551616, 1461501637330902918203684832716283019655932542976, 39402006196394479212279040100143613805079739270465446667948293404245721771497210611414266254884915640806627990306816
Offset: 0

Views

Author

Henry Bottomley, Aug 15 2000

Keywords

Comments

a(n) is the number of subdivisions of the Brownian motion on the unit interval at the n-th stage of subdivision. - Stephen Crowley, Apr 12 2007

Examples

			a(1)=4 since the possibilities are f(0)=0, f(1)=0; f(0)=0, f(1)=1; f(0)=1, f(1)=0; f(0)=1, f(1)=1.
For n=3: we need to count maps from a set with 8 points to a set with 8 points.  There are 8^8 such functions, that is, a(3) = 8^8 = 2^24 = 16777216. - _N. J. A. Sloane_, Mar 05 2023
		

References

  • François Robert, Discrete Iterations: A Metric Study, Springer-Verlag, 1986, p. 167.
  • Norbert Wiener, Nonlinear Problems in Random Theory, MIT Press Classic, 1958, Lecture 1.

Crossrefs

Programs

  • Mathematica
    lst={};Do[AppendTo[lst,(2^n)^(2^n)],{n,0,8}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 02 2009 *)
  • PARI
    a(n)=1<<(n<Charles R Greathouse IV, Jan 19 2012

Formula

a(n) = (2^n)^(2^n) = A000312(A000079(n)) = A000079(A036289(n)) = A001146(n)^n = A000722(n) + A057157(n).
Sum_{n>=1} 1/a(n) = A134880. - Amiram Eldar, Nov 15 2020

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 02 2009

A099035 a(n) = (n+1)*2^(n-1) - 1.

Original entry on oeis.org

1, 5, 15, 39, 95, 223, 511, 1151, 2559, 5631, 12287, 26623, 57343, 122879, 262143, 557055, 1179647, 2490367, 5242879, 11010047, 23068671, 48234495, 100663295, 209715199, 436207615, 905969663, 1879048191, 3892314111, 8053063679
Offset: 1

Views

Author

Ralf Stephan, Sep 28 2004

Keywords

Comments

Row sums of triangle A135852. - Gary W. Adamson, Dec 01 2007
Binomial transform of [1, 4, 6, 8, 10, 12, 14, 16, ...]. Equals A128064 * A000225, (A000225 starting 1, 3, 7, 15, ...). - Gary W. Adamson, Dec 28 2007

Crossrefs

First differences of A066524.

Programs

Formula

a(n) = A057711(n+1) - 1 = A058966(n+3)/2 = (A087323(n)-1)/2 = (A074494(n+1)-2)/3 = (A003261(n+1)-3)/4 = A036289(n+1)/4 - 1, n>0.
a(n) = A131056(n+1) - 2. - Juri-Stepan Gerasimov, Oct 02 2011
From Colin Barker, Mar 23 2012: (Start)
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3).
G.f.: x*(1-2*x^2)/((1-x)*(1-2*x)^2). (End)
E.g.f.: ((2*x+1)*exp(2*x) - 2*exp(x) + 1)/2. - G. C. Greubel, Dec 31 2017
Showing 1-10 of 104 results. Next