A128074
a(n) = (n^3+n)*9^n.
Original entry on oeis.org
0, 18, 810, 21870, 446148, 7676370, 117979902, 1674039150, 22384294920, 285916320882, 3521652245010, 42113381995278, 491427393476940, 5617523480607090, 63094193590782438, 697970937800860110
Offset: 0
-
[(n^3 + n) * 9^n: n in [1..20]]; // Vincenzo Librandi, Feb 22 2012
-
Table[(n^3+n)9^n,{n,20}] (* or *) LinearRecurrence[{36,-486,2916,-6561}, {18,810,21870,446148},20] (* Harvey P. Dale, Jun 16 2011 *)
-
A128074(n)=(n^3+n)*9^n \\ M. F. Hasler, Oct 06 2014
A352847
Number of copies of the star graph S(2,1,1) contained within the n-dimensional hypercube graph.
Original entry on oeis.org
0, 0, 48, 576, 3840, 19200, 80640, 301056, 1032192, 3317760, 10137600, 29736960, 84344832, 232587264, 626196480, 1651507200, 4278190080, 10909384704, 27433893888, 68136468480, 167352729600, 406931374080, 980510834688, 2343038877696, 5556613939200
Offset: 1
-
a[n_] := (2^n)*Binomial[n,2]*(n-1)*(n-2); Array[a, 25] (* Amiram Eldar, Apr 22 2022 *)
-
from math import comb
def a(n):
return (2**n)*comb(n,2)*(n-2)*(n-1)
A352994
Number of copies of the star graph S(2,2,1) contained within the n-dimensional hypercube graph.
Original entry on oeis.org
0, 0, 72, 1536, 14400, 92160, 470400, 2064384, 8128512, 29491200, 100362240, 324403200, 1005109248, 3005743104, 8722022400, 24662507520, 68183654400, 184817811456, 492285984768, 1291006771200, 3338686955520, 8526181171200, 21526669688832, 53788022931456
Offset: 1
-
a[n_] := (2^n)*Binomial[n,3]*3*n*(n-2); Array[a, 24] (* Amiram Eldar, Apr 22 2022 *)
-
from math import comb
def a(n):
return (2**n)*comb(n,3)*3*n*(n-2)
A119635
a(n) = n*(1 + n^2)*2^n.
Original entry on oeis.org
4, 40, 240, 1088, 4160, 14208, 44800, 133120, 377856, 1034240, 2748416, 7127040, 18104320, 45187072, 111083520, 269484032, 646184960, 1533542400, 3606052864, 8409579520, 19465764864, 44753223680, 102257131520, 232330887168
Offset: 1
-
List([1..30],n->n*(n^2+1)*2^n); # Muniru A Asiru, Mar 04 2019
-
[(n^3 + n)*2^n: n in [1..30]]; // Vincenzo Librandi, Feb 22 2013
-
[(n^3+n)*2^n$n=1..30]; # Muniru A Asiru, Mar 04 2019
-
Table[(n^3 + n)*2^n, {n, 30}] (* or *) CoefficientList[Series[4(1 +2x + 4x^2)/(1-2x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 22 2013 *)
-
{a(n) = n*(1+n^2)*2^n}; \\ G. C. Greubel, Mar 04 2019
-
[n*(1+n^2)*2^n for n in (1..30)] # G. C. Greubel, Mar 04 2019
Original entry on oeis.org
6, 90, 810, 5508, 31590, 161838, 765450, 3411720, 14526054, 59639490, 237731274, 924707340, 3523453830, 13191428502, 48642794730, 177008116752, 636661003590, 2266409860650, 7994034370026, 27964010896020, 97092998430246
Offset: 1
-
[(n^3 + n)*3^n: n in [1..30]]; // Vincenzo Librandi, Feb 22 2013
-
Table[(n^3 + n)*3^n, {n, 30}] (* or *) CoefficientList[Series[6 (1 + 3 x + 9 x^2)/(1 - 3 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 22 2013 *)
Original entry on oeis.org
8, 160, 1920, 17408, 133120, 909312, 5734400, 34078720, 193462272, 1059061760, 5628755968, 29192355840, 148310589440, 740344987648, 3639984783360, 17660905521152, 84696755077120, 402008938905600, 1890610243960832
Offset: 1
-
[(n^3 + n) * 4^n: n in [1..20]]; // Vincenzo Librandi, Feb 22 2013
-
Table[(n^3 + n) 4^n, {n, 20}] (* Vincenzo Librandi Feb 22 2013 *)
LinearRecurrence[{16,-96,256,-256},{8,160,1920,17408},20] (* Harvey P. Dale, Aug 14 2021 *)
A128013
a(n) = (n^3 +n)*5^n.
Original entry on oeis.org
10, 250, 3750, 42500, 406250, 3468750, 27343750, 203125000, 1441406250, 9863281250, 65527343750, 424804687500, 2697753906250, 16833496093750, 103454589843750, 627441406250000, 3761291503906250, 22315979003906250
Offset: 1
-
[(n^3 + n)*5^n: n in [1..20]]; // Vincenzo Librandi, Feb 22 2013
-
I:=[10,250,3750,42500]; [n le 4 select I[n] else 20*Self(n-1)-150*Self(n-2)+500*Self(n-3)-625*Self(n-4): n in [1..20]]; // Vincenzo Librandi, Feb 23 2013
-
Table[(n^3 + n) 5^n, {n, 30}] (* or *) CoefficientList[Series[10 (1 + 5 x + 25 x^2)/(1 - 5 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 22 2013 *)
-
for(n=1, 30, print1((n^3 +n)*5^n, ", ")) \\ G. C. Greubel, May 08 2018
Original entry on oeis.org
12, 360, 6480, 88128, 1010880, 10357632, 97977600, 873400320, 7437339648, 61070837760, 486873649152, 3787601264640, 28864133775360, 216128364576768, 1593927097712640, 11600403939459072, 83448431062548480
Offset: 1
-
[(n^3 + n)*6^n: n in [1..20]]; // Vincenzo Librandi, Feb 22 2013
-
Table[(n^3 + n) * 6^n, {n, 30}] (* or *) CoefficientList[Series[12 (1 + 6 x + 36 x^2)/(1 - 6 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 22 2013 *)
Original entry on oeis.org
16, 640, 15360, 278528, 4259840, 58195968, 734003200, 8724152320, 99052683264, 1084479242240, 11527692222464, 119571889520640, 1214960348692480, 12129812277624832, 119275021381140480, 1157425104234217472
Offset: 1
-
[(n^3 + n)*8^n: n in [1..20]]; // Vincenzo Librandi, Feb 22 2013
-
I:=[16,640,15360,278528]; [n le 4 select I[n] else 32*Self(n-1)-384*Self(n-2)+2048*Self(n-3)-4096*Self(n-4): n in [1..20]]; // Vincenzo Librandi, Feb 23 2013
-
Table[(n^3 + n) 8^n, {n, 30}] (* or *) CoefficientList[Series[16 (1 + 8 x + 64 x^2)/(1 - 8 x)^4, {x, 0, 20}],x] (* Vincenzo Librandi, Feb 22 2013 *)
Original entry on oeis.org
14, 490, 10290, 163268, 2184910, 26118078, 288240050, 2997696520, 29780961966, 285300001490, 2653572489106, 24083839729740, 214124712999470, 1870539234917542, 16094233518706770, 136653810502199312
Offset: 1
-
[(n^3 + n)*7^n: n in [1..20]]; // Vincenzo Librandi, Feb 22 2013
-
Table[(n^3 + n) * 7^n, {n, 30}] (* or *) CoefficientList[Series[14 (1 + 7 x + 49 x^2)/(1 - 7 x)^4, {x, 0, 20}], x] (* Vincenzo Librandi, Feb 22 2013 *)
Showing 1-10 of 10 results.
Comments