cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A128074 a(n) = (n^3+n)*9^n.

Original entry on oeis.org

0, 18, 810, 21870, 446148, 7676370, 117979902, 1674039150, 22384294920, 285916320882, 3521652245010, 42113381995278, 491427393476940, 5617523480607090, 63094193590782438, 697970937800860110
Offset: 0

Views

Author

Mohammad K. Azarian, May 02 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3 + n) * 9^n: n in [1..20]]; // Vincenzo Librandi, Feb 22 2012
    
  • Mathematica
    Table[(n^3+n)9^n,{n,20}] (* or *) LinearRecurrence[{36,-486,2916,-6561}, {18,810,21870,446148},20] (* Harvey P. Dale, Jun 16 2011 *)
  • PARI
    A128074(n)=(n^3+n)*9^n \\ M. F. Hasler, Oct 06 2014

Formula

a(1)=18, a(2)=810, a(3)=21870, a(4)=446148, a(n)=36*a(n-1)- 486*a(n-2)+ 2916*a(n-3)-6561*a(n-4). - Harvey P. Dale, Jun 16 2011
G.f.: 18*x*(1+9*x+81*x^2)/(1-9*x)^4. - Harvey P. Dale, Jun 16 2011

Extensions

Extended to a(0)=0 by M. F. Hasler, Oct 06 2014

A352847 Number of copies of the star graph S(2,1,1) contained within the n-dimensional hypercube graph.

Original entry on oeis.org

0, 0, 48, 576, 3840, 19200, 80640, 301056, 1032192, 3317760, 10137600, 29736960, 84344832, 232587264, 626196480, 1651507200, 4278190080, 10909384704, 27433893888, 68136468480, 167352729600, 406931374080, 980510834688, 2343038877696, 5556613939200
Offset: 1

Views

Author

Ben Eck, Apr 05 2022

Keywords

Comments

The star graph S(2,1,1) is the unique tree with degree sequence 3,2,1,1,1.

Crossrefs

Cf. A129002.

Programs

  • Mathematica
    a[n_] := (2^n)*Binomial[n,2]*(n-1)*(n-2); Array[a, 25] (* Amiram Eldar, Apr 22 2022 *)
  • Python
    from math import comb
    def a(n):
        return (2**n)*comb(n,2)*(n-2)*(n-1)

Formula

a(n) = 2^n*binomial(n,2)*(n-1)*(n-2).
G.f.: 48*x^3*(1 + 2*x)/(1 - 2*x)^5. - Stefano Spezia, Apr 15 2022
Sum_{n>=3} 1/a(n) = 9/8 + log(2)^2/2 - 3*log(2)/4 - Pi^2/12. - Amiram Eldar, Apr 22 2022

A352994 Number of copies of the star graph S(2,2,1) contained within the n-dimensional hypercube graph.

Original entry on oeis.org

0, 0, 72, 1536, 14400, 92160, 470400, 2064384, 8128512, 29491200, 100362240, 324403200, 1005109248, 3005743104, 8722022400, 24662507520, 68183654400, 184817811456, 492285984768, 1291006771200, 3338686955520, 8526181171200, 21526669688832, 53788022931456
Offset: 1

Views

Author

Ben Eck, Apr 14 2022

Keywords

Comments

S(2,2,1) is the star graph with two legs of length two and one of length one.

Crossrefs

Programs

  • Mathematica
    a[n_] := (2^n)*Binomial[n,3]*3*n*(n-2); Array[a, 24] (* Amiram Eldar, Apr 22 2022 *)
  • Python
    from math import comb
    def a(n):
        return (2**n)*comb(n,3)*3*n*(n-2)

Formula

a(n) = (2^n)*(C(n,3))*(3n)*(n-2).
G.f.: 24*x^3*(3 + 28*x + 12*x^2)/(1 - 2*x)^6. - Stefano Spezia, Apr 15 2022
Sum_{n>=3} 1/a(n) = 13/32 + 3*log(2)^2/16 - log(2)/4 - Pi^2/32. - Amiram Eldar, Apr 22 2022

A119635 a(n) = n*(1 + n^2)*2^n.

Original entry on oeis.org

4, 40, 240, 1088, 4160, 14208, 44800, 133120, 377856, 1034240, 2748416, 7127040, 18104320, 45187072, 111083520, 269484032, 646184960, 1533542400, 3606052864, 8409579520, 19465764864, 44753223680, 102257131520, 232330887168
Offset: 1

Views

Author

Mohammad K. Azarian, May 02 2007

Keywords

Crossrefs

Programs

  • GAP
    List([1..30],n->n*(n^2+1)*2^n); # Muniru A Asiru, Mar 04 2019
    
  • Magma
    [(n^3 + n)*2^n: n in [1..30]]; // Vincenzo Librandi, Feb 22 2013
    
  • Maple
    [(n^3+n)*2^n$n=1..30]; # Muniru A Asiru, Mar 04 2019
  • Mathematica
    Table[(n^3 + n)*2^n, {n, 30}] (* or *) CoefficientList[Series[4(1 +2x + 4x^2)/(1-2x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 22 2013 *)
  • PARI
    {a(n) = n*(1+n^2)*2^n}; \\ G. C. Greubel, Mar 04 2019
    
  • Sage
    [n*(1+n^2)*2^n for n in (1..30)] # G. C. Greubel, Mar 04 2019

Formula

G.f.: 4*x*(1 + 2*x + 4*x^2)/(1 - 2*x)^4. - Vincenzo Librandi, Feb 22 2013
E.g.f.: 4*x*(1 + 3*x + 2*x^2)*exp(2*x). - G. C. Greubel, Mar 04 2019

A121607 (n^3+n)*3^n.

Original entry on oeis.org

6, 90, 810, 5508, 31590, 161838, 765450, 3411720, 14526054, 59639490, 237731274, 924707340, 3523453830, 13191428502, 48642794730, 177008116752, 636661003590, 2266409860650, 7994034370026, 27964010896020, 97092998430246
Offset: 1

Views

Author

Mohammad K. Azarian, May 02 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3 + n)*3^n: n in [1..30]]; // Vincenzo Librandi, Feb 22 2013
  • Mathematica
    Table[(n^3 + n)*3^n, {n, 30}] (* or *) CoefficientList[Series[6 (1 + 3 x + 9 x^2)/(1 - 3 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 22 2013 *)

Formula

G.f.: 6*x*(1 + 3*x + 9*x^2)/(1 - 3*x)^4. - Vincenzo Librandi, Feb 22 2013

A127369 (n^3+n)*4^n.

Original entry on oeis.org

8, 160, 1920, 17408, 133120, 909312, 5734400, 34078720, 193462272, 1059061760, 5628755968, 29192355840, 148310589440, 740344987648, 3639984783360, 17660905521152, 84696755077120, 402008938905600, 1890610243960832
Offset: 1

Views

Author

Mohammad K. Azarian, May 02 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3 + n) * 4^n: n in [1..20]]; // Vincenzo Librandi, Feb 22 2013
  • Mathematica
    Table[(n^3 + n) 4^n, {n, 20}] (* Vincenzo Librandi Feb 22 2013 *)
    LinearRecurrence[{16,-96,256,-256},{8,160,1920,17408},20] (* Harvey P. Dale, Aug 14 2021 *)

Formula

G.f.: 8*x*(1+4*x+16*x^2)/(1-4*x)^4. [R. J. Mathar, Dec 19 2008]

A128013 a(n) = (n^3 +n)*5^n.

Original entry on oeis.org

10, 250, 3750, 42500, 406250, 3468750, 27343750, 203125000, 1441406250, 9863281250, 65527343750, 424804687500, 2697753906250, 16833496093750, 103454589843750, 627441406250000, 3761291503906250, 22315979003906250
Offset: 1

Views

Author

Mohammad K. Azarian, May 02 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3 + n)*5^n: n in [1..20]]; // Vincenzo Librandi, Feb 22 2013
    
  • Magma
    I:=[10,250,3750,42500]; [n le 4 select I[n] else 20*Self(n-1)-150*Self(n-2)+500*Self(n-3)-625*Self(n-4): n in [1..20]]; // Vincenzo Librandi, Feb 23 2013
    
  • Mathematica
    Table[(n^3 + n) 5^n, {n, 30}] (* or *) CoefficientList[Series[10 (1 + 5 x + 25 x^2)/(1 - 5 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 22 2013 *)
  • PARI
    for(n=1, 30, print1((n^3 +n)*5^n, ", ")) \\ G. C. Greubel, May 08 2018

Formula

G.f.: 10*x(1+5*x+25*x^2)/(1-5*x)^4. - Vincenzo Librandi, Feb 22 2013
a(n) = 20*a(n-1) -150*a(n-2) +500*a(n-3) -625*a(n-4). - Vincenzo Librandi, Feb 23 2013

A128043 (n^3+n)*6^n.

Original entry on oeis.org

12, 360, 6480, 88128, 1010880, 10357632, 97977600, 873400320, 7437339648, 61070837760, 486873649152, 3787601264640, 28864133775360, 216128364576768, 1593927097712640, 11600403939459072, 83448431062548480
Offset: 1

Views

Author

Mohammad K. Azarian, May 02 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3 + n)*6^n: n in [1..20]]; // Vincenzo Librandi, Feb 22 2013
  • Mathematica
    Table[(n^3 + n) * 6^n, {n, 30}] (* or *) CoefficientList[Series[12 (1 + 6 x + 36 x^2)/(1 - 6 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 22 2013 *)

Formula

G.f.: 12*x*(1 + 6*x + 36*x^2)/(1 - 6*x)^4. - Vincenzo Librandi, Feb 22 2013

A128048 (n^3+n)*8^n.

Original entry on oeis.org

16, 640, 15360, 278528, 4259840, 58195968, 734003200, 8724152320, 99052683264, 1084479242240, 11527692222464, 119571889520640, 1214960348692480, 12129812277624832, 119275021381140480, 1157425104234217472
Offset: 1

Views

Author

Mohammad K. Azarian, May 02 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3 + n)*8^n: n in [1..20]]; // Vincenzo Librandi, Feb 22 2013
    
  • Magma
    I:=[16,640,15360,278528]; [n le 4 select I[n] else 32*Self(n-1)-384*Self(n-2)+2048*Self(n-3)-4096*Self(n-4): n in [1..20]]; // Vincenzo Librandi, Feb 23 2013
  • Mathematica
    Table[(n^3 + n) 8^n, {n, 30}] (* or *) CoefficientList[Series[16 (1 + 8 x + 64 x^2)/(1 - 8 x)^4, {x, 0, 20}],x] (* Vincenzo Librandi, Feb 22 2013 *)

Formula

G.f.: 16*x*(1+8*x+64*x^2)/(1-8*x)^4. - Vincenzo Librandi, Feb 22 2013
a(n) = 32*a(n-1) -384*a(n-2) +2048*a(n-3) -4096*a(n-4). - Vincenzo Librandi, Feb 23 2013

A128051 (n^3+n)*7^n.

Original entry on oeis.org

14, 490, 10290, 163268, 2184910, 26118078, 288240050, 2997696520, 29780961966, 285300001490, 2653572489106, 24083839729740, 214124712999470, 1870539234917542, 16094233518706770, 136653810502199312
Offset: 1

Views

Author

Mohammad K. Azarian, May 02 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3 + n)*7^n: n in [1..20]]; // Vincenzo Librandi, Feb 22 2013
  • Mathematica
    Table[(n^3 + n) * 7^n, {n, 30}] (* or *) CoefficientList[Series[14 (1 + 7 x + 49 x^2)/(1 - 7 x)^4, {x, 0, 20}], x] (* Vincenzo Librandi, Feb 22 2013 *)

Formula

G.f.: 14*x*(1 + 7*x + 49*x^2)/(1 - 7*x)^4. - Vincenzo Librandi, Feb 22 2013
Showing 1-10 of 10 results.