cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A350363 Primes whose reversal is a ninth power.

Original entry on oeis.org

23888027348153, 17571893445665616311, 3627487775963728773631, 5213075488148035940813, 232364835105859429802371, 1648344985192619771689693, 6522990445513252220198849, 6771520922071318266744521, 23295376285906990980268061, 29758574646480445207299379
Offset: 1

Views

Author

Mohammed Yaseen, Dec 27 2021

Keywords

Crossrefs

Primes whose reversal is a k-th power: A007488 (k=2), A057699 (k=3), A058996 (k=4), A059000 (k=5), A059001 (k=6), A059002 (k=7), A059003 (k=8), A059005 (k=10).

Programs

  • Mathematica
    Union[(i=IntegerReverse)@Select[Range@1000^9,PrimeQ@i@#&]] (* Giorgos Kalogeropoulos, Jan 04 2022 *)
    Select[IntegerReverse/@(Range[1000]^9),PrimeQ]//Union (* Harvey P. Dale, Nov 27 2024 *)
  • PARI
    flip(n)=fromdigits(Vecrev(digits(n))) \\ A004086
    Set(select(isprime, vector(1000, n, flip(n^9)))) \\ adapted from A057699
    
  • Python
    from sympy import isprime
    flip9 = (int(str(k**9)[::-1]) for k in range(1, 1000) if k%10)
    print(sorted(filter(isprime, flip9))) # Michael S. Branicky, Jan 02 2022

A062018 a(n) = n^n written backwards.

Original entry on oeis.org

1, 4, 72, 652, 5213, 65664, 345328, 61277761, 984024783, 1, 116076113582, 6528440016198, 352295601578203, 61085552860021111, 573958083098398734, 61615590737044764481, 771467633688162042728, 42457573569257080464393
Offset: 1

Views

Author

Amarnath Murthy, Jun 01 2001

Keywords

Examples

			a(5) = 5213, as 5^5 = 3125.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 50 do a := convert(n^n,base,10):b := add(10^(nops(a)- i)*a[i],i=1..nops(a)):printf(`%d,`,b); od:
  • Mathematica
    Table[IntegerReverse[n^n],{n,20}] (* Harvey P. Dale, Jul 31 2022 *)
  • PARI
    a(n) = { fromdigits(Vecrev(digits( n^n )))} \\ Harry J. Smith, Jul 29 2009

Formula

a(n) = A004086(n^n).

Extensions

More terms from Jason Earls and Vladeta Jovovic, Jun 01 2001
Showing 1-2 of 2 results.