cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A032353 Numbers k such that 7*2^k+1 is prime.

Original entry on oeis.org

2, 4, 6, 14, 20, 26, 50, 52, 92, 120, 174, 180, 190, 290, 320, 390, 432, 616, 830, 1804, 2256, 6614, 13496, 15494, 16696, 22386, 54486, 88066, 95330, 207084, 283034, 561816, 804534, 811230, 1491852, 2139912, 2167800, 2915954, 3015762, 3511774, 5775996
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Extensions

Added more terms (from http://web.archive.org/web/20161028080239/http://www.prothsearch.net/riesel.html), Joerg Arndt, Apr 07 2013
a(41) from Jeppe Stig Nielsen, Jul 25 2019

A322916 Numbers k such that 303*2^k+1 is prime.

Original entry on oeis.org

1, 2, 5, 8, 9, 10, 13, 17, 21, 30, 38, 93, 125, 140, 170, 178, 181, 394, 453, 588, 1161, 1221, 1573, 1665, 1745, 3613, 3661, 5750, 6002, 6198, 6393, 6764, 7209, 7514, 9444, 13034, 15277, 16070, 20042, 22970, 22977, 25674, 28438, 31040, 35137, 42410, 60285
Offset: 1

Views

Author

Robert Price, Dec 30 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(303*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[303*2^# + 1] &] (* Robert Price, Dec 30 2018 *)

A322949 Numbers k such that 315*2^k+1 is prime.

Original entry on oeis.org

1, 3, 6, 9, 20, 22, 27, 32, 72, 97, 99, 104, 107, 120, 140, 142, 151, 180, 304, 305, 342, 440, 489, 521, 635, 665, 673, 767, 876, 1040, 1313, 1359, 1764, 2032, 2224, 2280, 2783, 2832, 2875, 5256, 8225, 10297, 11124, 12124, 17552, 18592, 24435, 30704, 37467
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[315*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

A322957 Numbers k such that 329*2^k+1 is prime.

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 27, 55, 87, 105, 111, 163, 225, 311, 487, 537, 723, 735, 771, 1515, 1599, 4685, 5523, 5895, 9723, 20107, 55035, 66355, 108393, 181189, 455645, 604999, 623005, 829207, 1019093, 1246017, 2099771, 2163717, 2266631, 2348105, 2688221, 3002295
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(329*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[329*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(37)-a(41) from Jeppe Stig Nielsen, Jan 04 2020
a(42) from Jeppe Stig Nielsen, Dec 20 2024

A322915 Numbers k such that 301*2^k+1 is prime.

Original entry on oeis.org

4, 184, 344, 352, 392, 1060, 2452, 7360, 9736, 10324, 21316, 22752, 27272, 27744, 28068, 55628, 72864, 88472, 95872, 124628, 218584, 424448, 517960, 880792, 1455620, 3284232
Offset: 1

Views

Author

Robert Price, Dec 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[301*2^# + 1] &] (* Robert Price, Dec 30 2018 *)

Extensions

a(26) from Jeppe Stig Nielsen, Dec 20 2024

A322922 Numbers k such that 305*2^k+1 is prime.

Original entry on oeis.org

3, 7, 21, 23, 29, 35, 53, 87, 91, 95, 115, 165, 179, 233, 367, 419, 609, 791, 2937, 3713, 4087, 5071, 6497, 30011, 30783, 32861, 48299, 60155, 143623, 293525, 465959, 567161, 975215, 1024223, 1106333, 1285643, 1597089, 2233655, 2733989, 2840155, 3171039
Offset: 1

Views

Author

Robert Price, Dec 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[305*2^# + 1] &] (* Robert Price, Dec 30 2018 *)

Extensions

a(38)-a(39) from Jeppe Stig Nielsen, Dec 27 2019
a(40) from Jeppe Stig Nielsen, Feb 05 2020
a(41) from Jeppe Stig Nielsen, Dec 20 2024

A322945 Numbers k such that 307*2^k+1 is prime.

Original entry on oeis.org

2, 8, 16, 26, 34, 112, 182, 226, 304, 782, 6886, 36422, 647786, 1289306, 2862962
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[307*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(15) from Jeppe Stig Nielsen, May 30 2020

A322946 Numbers k such that 311*2^k+1 is prime.

Original entry on oeis.org

9, 29, 35, 105, 125, 131, 179, 359, 2735, 28199, 47349, 64485, 1094135, 1171199, 1323071, 2798459, 3037565, 3270759, 3282455
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[311*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(16) from Jeppe Stig Nielsen, Dec 27 2019
a(17)-a(20) from Jeppe Stig Nielsen, Dec 20 2024

A322948 Numbers k such that 313*2^k+1 is prime.

Original entry on oeis.org

4, 10, 16, 24, 70, 184, 250, 432, 460, 792, 8482, 9868, 10954, 14098, 16260, 17770, 19354, 81504, 85672, 158662, 166354, 188914, 327924, 337942, 424318, 519748, 621432, 888288, 1949544, 3716716, 3837304, 3869536
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Maple
    select(n->isprime(313*2^n+1),[$1..1000]); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Select[Range[1000], PrimeQ[313*2^# + 1] &] (* Robert Price, Dec 31 2018 *)

Extensions

a(30)-a(32) from Jeppe Stig Nielsen, Dec 20 2024

A322950 Numbers k such that 317*2^k+1 is prime.

Original entry on oeis.org

7, 11, 243, 291, 327, 1211, 7331, 26775, 101603, 171071, 284795, 295195, 323871, 589755, 833467, 1047471
Offset: 1

Views

Author

Robert Price, Dec 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[317*2^# + 1] &] (* Robert Price, Dec 31 2018 *)
Showing 1-10 of 22 results. Next