A002281 a(n) = 7*(10^n - 1)/9.
0, 7, 77, 777, 7777, 77777, 777777, 7777777, 77777777, 777777777, 7777777777, 77777777777, 777777777777, 7777777777777, 77777777777777, 777777777777777, 7777777777777777, 77777777777777777, 777777777777777777, 7777777777777777777, 77777777777777777777, 777777777777777777777
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Crossrefs
Programs
-
Magma
[7*(10^n-1)/9 : n in [0..30]]; // Wesley Ivan Hurt, Mar 24 2015
-
Maple
A002281:=n->7*(10^n-1)/9: seq(A002281(n), n=0..30); # Wesley Ivan Hurt, Mar 24 2015
-
Mathematica
LinearRecurrence[{11,-10},{0,7},25] (* Robert G. Wilson v, Jul 06 2013 *)
-
PARI
a(n)=7*(10^n-1)/9 \\ Charles R Greathouse IV, Sep 24 2015
Formula
From Vincenzo Librandi, Jul 22 2010: (Start)
a(n) = a(n-1) + 7*10^(n-1) with n>0, a(0)=0.
a(n) = 11*a(n-1) - 10*a(n-2) with n>1, a(0)=0, a(1)=7. (End)
G.f.: 7*x/((x-1)*(10*x-1)). - Colin Barker, Jan 24 2013
a(n) = 7*A002275(n). - Wesley Ivan Hurt, Mar 24 2015
E.g.f.: 7*exp(x)*(exp(9*x) - 1)/9. - Stefano Spezia, Sep 13 2023
From Elmo R. Oliveira, Jul 20 2025: (Start)
a(n) = (A099915(n) - 1)/2.