A002371 Period of decimal expansion of 1/(n-th prime) (0 by convention for the primes 2 and 5).
0, 1, 0, 6, 2, 6, 16, 18, 22, 28, 15, 3, 5, 21, 46, 13, 58, 60, 33, 35, 8, 13, 41, 44, 96, 4, 34, 53, 108, 112, 42, 130, 8, 46, 148, 75, 78, 81, 166, 43, 178, 180, 95, 192, 98, 99, 30, 222, 113, 228, 232, 7, 30, 50, 256, 262, 268, 5, 69, 28, 141, 146, 153, 155, 312, 79, 110
Offset: 1
Examples
A002371(11) = 15 because the 11th prime is 31, and 1/31 = 0.03225806451612903225806451612903225806452... has period 15. - _Richard F. Lyon_, Mar 29 2022
References
- Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed. New York: Dover, 1966, pages 65, 309. ISBN 0-486-21096-0.
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, 1996, p. 162. ISBN 978-0-387-97993-9.
- D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 15.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)
- C. K. Caldwell, The Prime Glossary, Period of a prime
- Matt Parker and Brady Haran, The Reciprocals of Primes, Numberphile video (2022).
- William Shanks, On the number of figures in the period of the reciprocal of every prime number below 20,000, Proc. Royal Soc. London, 22 (1874), 200-210. See also on JSTOR.
- Eric Weisstein's World of Mathematics, Decimal Expansion
- Index entries for sequences related to decimal expansion of 1/n
Crossrefs
Programs
-
Maple
seq(subs(FAIL=0,numtheory:-order(10, ithprime(n))),n=1..100); # Robert Israel, Jul 15 2016
-
Mathematica
Table[ Length[ RealDigits[1 / Prime[n]] [[1, 1]]], {n, 1, 70}] Table[If[IntegerQ[#], #, 0] &[MultiplicativeOrder[10, Prime[n]]], {n, 1, 70}] (* Jan Mangaldan, Jul 07 2020 *)
-
PARI
a(n)=if(n<4,n==2,znorder(Mod(10, prime(n))))
-
Python
from sympy import prime, n_order def A002371(n): return 0 if n == 1 or n == 3 else n_order(10,prime(n)) # Chai Wah Wu, Feb 07 2022
Formula
From Alexander Adamchuk, Jan 28 2007: (Start)
Extensions
More terms from Arlin Anderson (starship1(AT)gmail.com)
Edited by Charles R Greathouse IV, Mar 24 2010
Comments