A002389 Decimal expansion of -log(gamma), where gamma is Euler's constant A001620.
5, 4, 9, 5, 3, 9, 3, 1, 2, 9, 8, 1, 6, 4, 4, 8, 2, 2, 3, 3, 7, 6, 6, 1, 7, 6, 8, 8, 0, 2, 9, 0, 7, 7, 8, 8, 3, 3, 0, 6, 9, 8, 9, 8, 1, 2, 6, 3, 0, 6, 4, 7, 9, 1, 0, 9, 0, 1, 5, 1, 3, 0, 4, 5, 7, 6, 6, 3, 1, 4, 2, 0, 0, 5, 5, 7, 5, 3, 0, 4, 7, 5, 6, 2, 6, 1, 8
Offset: 0
Examples
.549539312981644822337661768802907788330698981263...
References
- W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. XVIII.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- C. Elsner, On a sequence transformation with integral coefficients for Euler's constant, Proc. Amer. Math. Soc., Vol. 123 (1995), Number 5, pp. 1537-1541.
- Simon Plouffe, -log(gamma) to 10000 digits
- Simon Plouffe, -log(gamma) to 1024 digits
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); -Log(EulerGamma(R)); // G. C. Greubel, Sep 07 2018
-
Mathematica
RealDigits[-Log[EulerGamma], 10, 100][[1]] (* G. C. Greubel, Sep 07 2018 *)
-
PARI
-log(Euler) \\ Michel Marcus, Mar 11 2013
Comments