cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002389 Decimal expansion of -log(gamma), where gamma is Euler's constant A001620.

Original entry on oeis.org

5, 4, 9, 5, 3, 9, 3, 1, 2, 9, 8, 1, 6, 4, 4, 8, 2, 2, 3, 3, 7, 6, 6, 1, 7, 6, 8, 8, 0, 2, 9, 0, 7, 7, 8, 8, 3, 3, 0, 6, 9, 8, 9, 8, 1, 2, 6, 3, 0, 6, 4, 7, 9, 1, 0, 9, 0, 1, 5, 1, 3, 0, 4, 5, 7, 6, 6, 3, 1, 4, 2, 0, 0, 5, 5, 7, 5, 3, 0, 4, 7, 5, 6, 2, 6, 1, 8
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Aug 24 2025: (Start)
By definition, the Euler-Mascheroni constant gamma = lim_{n -> oo} s(n), where s(n) = Sum_{k = 1..n} 1/k - log(n). The convergence is slow. For example, s(50) = 0.5(87...) is only correct to 1 decimal digit. Let S(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*s(n+k). Elsner shows that S(n) converges to gamma much more rapidly. For example, S(50) = 0.57721566490153286060651209008(02...) gives gamma correct to 29 decimal digits.
Define E(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*log(s(n+k)). Then it appears that E(n) converges rapidly to log(gamma). For example, E(50) = -0.549539312981644822337661768802(88...) gives log(gamma) correct to 30 decimal digits. Cf. A073004. (End)

Examples

			.549539312981644822337661768802907788330698981263...
		

References

  • W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. XVIII.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); -Log(EulerGamma(R)); // G. C. Greubel, Sep 07 2018
  • Mathematica
    RealDigits[-Log[EulerGamma], 10, 100][[1]] (* G. C. Greubel, Sep 07 2018 *)
  • PARI
    -log(Euler) \\ Michel Marcus, Mar 11 2013