A002425 Denominator of Pi^(2n)/(Gamma(2n)*(1-2^(-2n))*zeta(2n)).
1, 1, 1, 17, 31, 691, 5461, 929569, 3202291, 221930581, 4722116521, 968383680827, 14717667114151, 2093660879252671, 86125672563201181, 129848163681107301953, 868320396104950823611, 209390615747646519456961
Offset: 1
References
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 73.
- S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51.
- Konrad Knopp, Theory and application of infinite series, Divergent series, Dover, p. 479
- L. Oettinger, Archiv. Math. Phys., 26 (1856), see esp. p. 5.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..300
- H. Cohn, Some elementary aspects of modular functions in several variables, Bull. Am. Math. Soc., Sept. 1965, 681ff, esp. p. 688.
- Ren Guan, K_0 groups of noncommutative R^2n, arXiv:2208.06253 [math.RA], 2022. See p. 22.
- S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51. [Annotated scanned copy of pages 38-51 only, plus notes]
- Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, J. Springer, 1922. (Original german edition of "Theory and Application of Infinite Series")
- Vladimir Shevelev, On a Luschny question, arXiv:1708.08096 [math.NT], 2017.
Crossrefs
Programs
-
Magma
[Denominator(4*n/((4^n-1)*Bernoulli(2*n))): n in [1..20]]; // G. C. Greubel, Jul 03 2019
-
Maple
A002425 := n -> (-1)^n*euler(2*n-1,0)*2^padic[ordp](2*n,2); # Peter Luschny, Nov 26 2010 A002425_list := proc(n) 1/(1+1/exp(z)); series(%,z,2*n+4); seq(numer((-1)^i*(2*i+1)!*coeff(%,z,2*i+1)),i=0..n) end; A002425_list(17); # Peter Luschny, Jul 12 2012
-
Mathematica
a[n_]:= (-1)^(n-1) * Numerator[EulerE[2n-1, 1]]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Sep 20 2011, after N. J. A. Sloane's comment *) a[n_]:= If[n<1, 0, With[{m = 2n-1}, Numerator[ m! SeriesCoefficient[ Tan[x/2], {x, 0, m}]]]] (* Michael Somos, Sep 14 2013 *) Table[2*(4^n-1)*Zeta[1-2n] // Abs // Numerator, {n, 1, 20}] (* Jean-François Alcover, Oct 16 2013 *)
-
PARI
for(n=1,20,print1(abs(numerator(2*bernfrac(2*n)*(4^n-1)/(2*n))),","))
-
PARI
a(n)=if(n<1,0,(-1)^n/n*(1-4^n)*bernfrac(2*n)*2^valuation(2*n,2))
-
PARI
a(n)=(-1)^n*4*bitand(n,-n)*polylog(1-2*n,-1); \\ Peter Luschny, Nov 22 2012
-
Sage
def A002425_list(n): T = [0]*n; T[0] = 1; S = [0]*n; k2 = 0 for k in (1..n-1): T[k] = k*T[k-1] for k in (1..n): if is_odd(k): S[k-1] = 4*k2; k2 += 1 else: S[k-1] = S[k2-1]+2*k2-1 for j in (k..n-1): T[j] = (j-k)*T[j-1]+(j-k+2)*T[j] return [T[j]>>S[j] for j in (0..n-1)] A002425_list(20) # Peter Luschny, Nov 17 2012
-
Sage
[denominator(4*n/((4^n-1)*bernoulli(2*n))) for n in (1..20)] # G. C. Greubel, Jul 03 2019
Formula
a(n) = (-1)^n/n*(1 - 4^n)*B(2*n)*2^A001511(n) where B(k) denotes the k-th Bernoulli number. - Benoit Cloitre, Dec 30 2003
This is different from the sequence of numerators of the expansion of cosec(x) - cot(x) - see A089171.
From Johannes W. Meijer, May 24 2009: (Start)
a(n) = denominator(4*n/((2^(2*n)-1)*bernoulli(2*n))).
E.g.f.: a(n) = numerator((2*n+1)!*[x^(2*n+1)](1/(1+1/exp(x)))). - Peter Luschny, Jul 12 2012
a(n) = numerator(abs(2*(4^n-1)*zeta(1-2*n))). - Jean-François Alcover, Oct 16 2013
For every positive integers n,k we have a(n) = (-1)^(n+k)*N(2*n-1,k) + 2*(-1)^(n-1)*A006519(2*n)*(1^(2*n-1)-2^(2*n-1)+..+(-1)^k*(k-1)^(2*n-1)), where N(n,k) is the numerator of Euler(n,k). So, the right hand side is an invariant of k. - Vladimir Shevelev, Sep 19 2017
a(n) = numerator(r(n)) where r(n) = (-1)^binomial(2*n, 2)*Sum_{k=1..2*n}(-1)^k*Stirling2(2*n, k)*2^(-k)*(k-1)!. - Peter Luschny, May 24 2020
a(n) = 2*(-1)^n*A335956(2*n)*zeta(1-2*n). - Peter Luschny, Aug 30 2020
Extensions
The n=15 term was formerly incorrectly given as 86125672563301143.
Formula and cross-references edited by Johannes W. Meijer, May 21 2009
Comments