cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002436 E.g.f.: Sum_{n >= 0} a(n)*x^(2*n)/(2*n)! = sec(2*x).

Original entry on oeis.org

1, 4, 80, 3904, 354560, 51733504, 11070525440, 3266330312704, 1270842139934720, 630424777638805504, 388362339077351014400, 290870261262635870715904, 260290690801376575335956480, 274278793184290987427604987904, 336150887870579862992197737512960
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 4*x + 80*x^2 + 3904*x^3 + 354560*x^4 + 51733504*x^5 + 11070525440*x^6 + ...
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 75.
  • J. W. L. Glaisher, On the last two figures in certain coefficients analogous to the Eulerian numbers, Quart. J. Pure Appl. Math., 44 (1913), 105-112.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

(-1)^n*a(n) give the alternating row sums of A060187(2*n), n >= 0. The alternating sums for odd numbered rows vanish. - Wolfdieter Lang, Jul 12 2017

Programs

  • Magma
    m:=35; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1+Tan(x))/(1-Tan(x)) )); [Factorial(n-1)*b[n]: n in [1..m by 2]]; // Vincenzo Librandi, May 30 2019
  • Maple
    A := n -> (-4)^n*euler(2*n); # (Then A(n) = a(n+1) for n >= 0.) # Peter Luschny, Jan 27 2009
  • Mathematica
    Rest@ Union[ Range[0, 24]! CoefficientList[ Series[ Sec[ 2x], {x, 0, 24}], x]] (* Robert G. Wilson v, Apr 16 2011 *)
    a[ n_] :=  If[ n < 0, 0, 2 (-16)^n LerchPhi[ -1, -2 n, 1/2]]; (* Michael Somos, Oct 14 2014 *)
    With[{nn=30},Take[CoefficientList[Series[Sec[2x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, May 06 2018 *)
  • PARI
    {a(n) = local(m); if( n<0, 0, m = 2*n; m! * polcoeff( 1 / cos( 2*x + x * O(x^m)), m))}; /* Michael Somos, Apr 16 2011 */
    
  • Sage
    @CachedFunction
    def sp(n,x) :
        if n == 0 : return 1
        return -add(2^(n-k)*sp(k,1/2)*binomial(n,k) for k in range(n)[::2])
    A002436 = lambda n : abs(sp(2*(n-1),x))
    [A002436(n) for n in (1..15)]   # Peter Luschny, Jul 30 2012
    

Formula

a(n) = A000831(2*n) = 4^n * A000364(n). a(n) = 2 * A000816(n) except n=0. - Michael Somos, Apr 26 2011
E.g.f.: sec(2*x) = 1 + 2*(x^2)/G(0); G(k) = (k+1)*(2*k+1) - 2*(x^2) + (x^2)*(2*k+1)*(2*k+2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 01 2011
E.g.f.: sec(2*x) = 1/cos(2*x) = 1/(cos(x)^2 - sin(x)^2). - Arkadiusz Wesolowski, Jul 25 2012
From Sergei N. Gladkovskii, Oct 23 2012 (Start)
G.f.: 1/U(0) where U(k) = 1 - 2*(4*k+1)*(4*k+2)*x/(1 - 2*(4*k+3)*(4*k+4)*x/U(k+1)); (continued fraction, 2-step).
E.g.f.: 1/S(0) where S(k) = 1 - 2*x^2/((4*k+1)*(2*k+1) - x^2*(4*k+1)*(2*k+1)/(x^2 - (4*k+3)*(k+1)/S(k+1))); (continued fraction, 3rd kind, 3-step). (End)
G.f.: 1/U(0) where U(k) = 1 - (4*k+2)*(4*k+2)*x^2/(1 - (4*k+4)*(4*k+4)*x^2/U(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Nov 06 2012
G.f.: 1/G(0) where G(k) = 1 - 4*x*(k+1)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 12 2013
a(n+1) = | 2*16^n*lerchphi(-1, -2*n, 1/2) |, n>=0. - Peter Luschny, Apr 27 2013
G.f.: Q(0), where Q(k) = 1 - x*(2*k+2)^2/( x*(2*k+2)^2 - 1/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 10 2013
E.g.f.: sec(2*x) = 1/cos(2*x) = 1 + 2*x^2/(1-2*x^2)*T(0), where T(k) = 1 - x^2*(2*k+1)*(2*k+2)/( x^2*(2*k+1)*(2*k+2) + ((k+1)*(2*k+1) - 2*x^2)*((k+2)*(2*k+3) - 2*x^2)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 25 2013
a(n) = (-1)^n*2^(6*n+1)*(Zeta(-2*n,1/4) - Zeta(-2*n, 3/4)), where Zeta(a, z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015

Extensions

More terms from Michael Somos, Jun 21 2002