A002479 Numbers of the form x^2 + 2*y^2.
0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 16, 17, 18, 19, 22, 24, 25, 27, 32, 33, 34, 36, 38, 41, 43, 44, 48, 49, 50, 51, 54, 57, 59, 64, 66, 67, 68, 72, 73, 75, 76, 81, 82, 83, 86, 88, 89, 96, 97, 98, 99, 100, 102, 107, 108, 113, 114, 118, 121, 123, 128, 129, 131
Offset: 1
References
- L. Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 421.
- D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 59.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..3148 (first 1000 terms from T. D. Noe)
- L. Euler, Vollstaendige Anleitung zur Algebra, Zweiter Teil.
- L. Euler, (E256) Specimen de usu observationum in mathesi pura, Novi Commentarii academiae scientiarum Petropolitanae 6 (1761), pp. 185-230.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Programs
-
Haskell
a002479 n = a002479_list !! (n-1) a002479_list = 0 : filter f [1..] where f x = all (even . snd) $ filter ((`elem` [5,7]) . (`mod` 8) . fst) $ zip (a027748_row x) (a124010_row x) -- Reinhard Zumkeller, Feb 20 2014
-
Magma
[n: n in [0..131] | NormEquation(2, n) eq true]; // Arkadiusz Wesolowski, May 11 2016
-
Maple
lis:={}; M:=50; M2:=M^2; for x from 0 to M do for y from 0 to M do if x^2+2*y^2 <= M2 then lis:={op(lis),x^2+2*y^2}; fi; od: od: sort(convert(lis,list)); # N. J. A. Sloane, Apr 30 2015
-
Mathematica
q = 16; imax = q^2; Select[Union[Flatten[Table[x^2 + 2y^2, {y, 0, q/Sqrt[2]}, {x, 0, q}]]], # <= imax &] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *) Union[#[[1]]+2#[[2]]&/@Tuples[Range[0,10]^2,2]] (* Harvey P. Dale, Nov 24 2014 *)
-
PARI
is(n)=my(f=factor(n));for(i=1,#f[,1],if(f[i,1]%8>4 && f[i,2]%2, return(0)));1 \\ Charles R Greathouse IV, Nov 20 2012
-
PARI
list(lim)=my(v=List()); for(a=0,sqrtint(lim\=1), for(b=0,sqrtint((lim-a^2)\2), listput(v,a^2+2*b^2))); Set(v) \\ Charles R Greathouse IV, Jun 16 2016
-
Python
from itertools import count, islice from sympy import factorint def A002479_gen(): # generator of terms return filter(lambda n:all(p & 7 < 5 or e & 1 == 0 for p, e in factorint(n).items()),count(0)) A002479_list = list(islice(A002479_gen(),30)) # Chai Wah Wu, Jun 27 2022
Comments