cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002486 Apart from two leading terms (which are present by convention), denominators of convergents to Pi (A002485 and A046947 give numerators).

Original entry on oeis.org

1, 0, 1, 7, 106, 113, 33102, 33215, 66317, 99532, 265381, 364913, 1360120, 1725033, 25510582, 52746197, 78256779, 131002976, 340262731, 811528438, 1963319607, 4738167652, 6701487259, 567663097408, 1142027682075, 1709690779483, 2851718461558, 44485467702853
Offset: 0

Views

Author

Keywords

Comments

Disregarding first two terms, integer diameters of circles beginning with 1 and a(n+1) is the smallest integer diameter with corresponding circumference nearer an integer than is the circumference of the circle with diameter a(n). See PARI program. - Rick L. Shepherd, Oct 06 2007
a(n+1) = numerator of fraction obtained from truncated continued fraction expansion of 1/Pi to n terms. - Artur Jasinski, Mar 25 2008

Examples

			The convergents are 3, 22/7, 333/106, 355/113, 103993/33102, ...
		

References

  • P. Beckmann, A History of Pi. Golem Press, Boulder, CO, 2nd ed., 1971, p. 171 (but beware errors).
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 88.
  • K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000; p. 293.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 274.

Crossrefs

Programs

  • Maple
    Digits := 60: E := Pi; convert(evalf(E),confrac,50,'cvgts'): cvgts;
    with(numtheory):cf := cfrac (Pi,100): seq(nthdenom (cf,i), i=-2..28 ); # Zerinvary Lajos, Feb 07 2007
  • Mathematica
    Join[{1,0},Denominator[Convergents[Pi,30]]] (* Harvey P. Dale, Sep 13 2013 *)
  • PARI
    for(i=1,#cf=contfrac(Pi),print1(contfracpnqn(vecextract(cf,2^i-1))[2,2]",")) \\ M. F. Hasler, Apr 01 2013

Extensions

Extended and corrected by David Sloan, Sep 23 2002