cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A047833 Erroneous version of A002499.

Original entry on oeis.org

1, 3, 10, 70, 708, 15248, 543520
Offset: 1

Views

Author

Keywords

A047834 Another erroneous version of A002499.

Original entry on oeis.org

1, 3, 10, 70, 709, 47960
Offset: 1

Views

Author

Keywords

A002500 Number of self-converse relations on n points.

Original entry on oeis.org

1, 2, 8, 44, 436, 7176, 222368, 12376880, 1302871456, 254079924896, 94287450368768, 65986000800656832, 88430997899765949952, 226039101814259861321856, 1112311767839787173832758784
Offset: 0

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 155, Table 6.6.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

Equals A029849*2 - A000595. Cf. A002499.

Extensions

In the Encyclopedia of Integer Sequences the n=6 term is given incorrectly as 484256.
Corrected and extended with formula by Christian G. Bower, Jun 15 1998

A054933 Number of unlabeled digraphs on n nodes up to reversing the arcs.

Original entry on oeis.org

1, 3, 13, 144, 5158, 778084, 441288796, 896699384640, 6513980949408584, 170630216624502796000, 16261454692830032538976880, 5683372715412978313604073582912, 7334542846356465411966209047539403296, 35157828307617499762304829312302735958971072, 629172630775224433640531447950565255471723325434560
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Crossrefs

Programs

Formula

a(n) = (A000273(n) + A002499(n))/2.

A126067 Triangle read by rows: T(n,k) is the number of unlabeled self-converse digraphs with n nodes and k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 5, 9, 10, 12, 10, 9, 5, 3, 1, 1, 1, 1, 3, 6, 15, 24, 41, 57, 77, 84, 90, 84, 77, 57, 41, 24, 15, 6, 3, 1, 1, 1, 1, 3, 7, 20, 42, 91, 164, 295, 463, 683, 918, 1185, 1394, 1550, 1590, 1550, 1394, 1185, 918, 683, 463, 295, 164, 91, 42, 20, 7, 3, 1, 1
Offset: 0

Views

Author

Vladeta Jovovic, Feb 28 2007

Keywords

Examples

			Triangle begins:
  1;
  1;
  1,1,1;
  1,1,2,2,2,1,1;
  1,1,3,5,9,10,12,10,9,5,3,1,1;
  1,1,3,6,15,24,41,57,77,84,90,84,77,57,41,24,15,6,3,1,1;
  ....
		

Crossrefs

Row sums are A002499.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(c=gcd(v[i], v[j])*if(v[i]*v[j]%2==0, 2, 1)); t(2*v[i]*v[j]/c)^c)) * prod(i=1, #v, my(c=v[i]); if(c%2, t(2*c)^(c\2), t(c)^(c-1-c%4/2)*t(c/2)^(c%4)))}
    Row(n) = {my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); Vecrev(s)/n!}
    { for(n=0, 5, print(Row(n))) } \\ Andrew Howroyd, Apr 19 2020

Extensions

a(0)=1 prepended and terms a(46) and beyond from Andrew Howroyd, Apr 19 2020
Showing 1-5 of 5 results.