cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002499 Number of self-converse digraphs with n nodes.

Original entry on oeis.org

1, 3, 10, 70, 708, 15224, 544152, 39576432, 5074417616, 1296033011648, 604178966756320, 556052774253161600, 954895322019762585664, 3224152068625567826724224, 20610090531322819956330186112
Offset: 1

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 155, Table 6.6.1 (but the last entry is wrong).
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1980.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002500.

Programs

  • Mathematica
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]]*If[Mod[v[[i]] v[[j]], 2]==0, 2, 1], {j, 1, i-1}], {i, 2, Length[v]}]+Sum[Quotient[v[[i]], 2] + If[Mod[v[[i]], 2]==0, Quotient[v[[i]]-2, 4]*2+1, 0], {i, 1, Length[v]}];
    a[n_] := Module[{s=0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    Array[a, 15] (* Jean-François Alcover, Aug 16 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j])*if(v[i]*v[j]%2==0, 2, 1))) + sum(i=1, #v, v[i]\2 + if(v[i]%2==0, (v[i]-2)\4*2+1))}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Sep 18 2018

Formula

Asymptotics (R. W. Robinson): a(n) ~ 2^((n^2 - 1)/2) * exp(sqrt(n/2) - n/2 - 1/8) * n^(n/2) / n!, (Farrugia, formula 7.28, p. 199). - Vaclav Kotesovec, Dec 31 2020

Extensions

More terms from Vladeta Jovovic, Apr 17 2000

A029849 Number of nonisomorphic and nonantiisomorphic relations.

Original entry on oeis.org

1, 2, 9, 74, 1740, 149572, 48575680, 56147642904, 229149201466592, 3333310913116926416, 174695272793893644765312, 33301710992572083379669646560, 23278728241293538748514513208527104
Offset: 0

Views

Author

Christian G. Bower, Jan 15 1998 and Jun 15 1998

Keywords

Crossrefs

Formula

a(n) = (A000595(n) + A002500(n)) / 2. - Sean A. Irvine, Mar 05 2020
Showing 1-2 of 2 results.