A002533 a(n) = 2*a(n-1) + 5*a(n-2), with a(0) = a(1) = 1.
1, 1, 7, 19, 73, 241, 847, 2899, 10033, 34561, 119287, 411379, 1419193, 4895281, 16886527, 58249459, 200931553, 693110401, 2390878567, 8247309139, 28449011113, 98134567921, 338514191407, 1167701222419, 4027973401873, 13894452915841, 47928772841047, 165329810261299
Offset: 0
References
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Albert Tarn, Approximations to certain square roots and the series of numbers connected therewith [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (2,5).
Crossrefs
Programs
-
Magma
[(1/2)*Floor((1+Sqrt(6))^n+(1-Sqrt(6))^n): n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
-
Magma
[n le 2 select 1 else 2*Self(n-1) + 5*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
-
Maple
A002533:=(-1+z)/(-1+2*z+5*z**2); # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
f[n_] := Simplify[((1 + Sqrt[6])^n + (1 - Sqrt[6])^n)/2]; Array[f, 28, 0] (* Or *) LinearRecurrence[{2, 5}, {1, 1}, 28] (* Or *) Table[ MatrixPower[{{1, 2}, {3, 1}}, n][[1, 1]], {n, 0, 25}] (* Robert G. Wilson v, Sep 18 2013 *)
-
PARI
a(n)=([0,1; 5,2]^n*[1;1])[1,1] \\ Charles R Greathouse IV, May 10 2016
-
PARI
x='x+O('x^30); Vec((1-x)/(1-2*x-5*x^2)) \\ G. C. Greubel, Jan 08 2018
-
Sage
[lucas_number2(n,2,-5)/2 for n in range(0, 21)] # Zerinvary Lajos, Apr 30 2009
Formula
a(n)/A002532(n), n>0, converges to sqrt(6). - Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003
From Mario Catalani (mario.catalani(AT)unito.it), May 03 2003: (Start)
G.f.: (1-x)/(1-2*x-5*x^2).
a(n) = (1/2)*((1+sqrt(6))^n + (1-sqrt(6))^n).
a(n)/A083694(n) converges to sqrt(3/2).
a(n)/A083695(n) converges to sqrt(2/3).
a(n) = a(n-1) + 3*A083694(n-1).
a(n) = a(n-1) + 2*A083695(n-1), n>0. (End)
Binomial transform of expansion of cosh(sqrt(6)*x) (A000400, with interpolated zeros). E.g.f.: exp(x)*cosh(sqrt(6)*x) - Paul Barry, May 09 2003
From Mario Catalani (mario.catalani(AT)unito.it), Jun 14 2003: (Start)
a(2*n+1) = 2*a(n)*a(n+1) - (-5)^n.
a(n)^2 - 6*A002532(n)^2 = (-5)^n. (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * 6^k. - Paul Barry, Jul 25 2004
a(n) = Sum_{k=0..n} A098158(n,k)*6^(n-k). - Philippe Deléham, Dec 26 2007
If p(1)=1, and p(I)=6, for i>1, and if A is the Hessenberg matrix of order n defined by: A(i,j) = p(j-i+1) for i<=j, A(i,j)=-1 for i=j+1, and A(i,j)=0 otherwise. Then, for n>=1, a(n) = det A. - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(6*k-1)/(x*(6*k+5) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
Comments