cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002548 Denominators of coefficients for numerical differentiation.

Original entry on oeis.org

1, 1, 12, 6, 180, 10, 560, 1260, 12600, 1260, 166320, 13860, 2522520, 2702700, 2882880, 360360, 110270160, 2042040, 775975200, 162954792, 56904848, 2586584, 1427794368, 892371480, 116008292400, 120470149800, 1124388064800
Offset: 2

Views

Author

Keywords

Comments

Denominator of 1 - 2*HarmonicNumber(n-1)/n. - Eric W. Weisstein, Apr 15 2004
Denominator of u(n) = sum( k=1, n-1, 1/(k(n-k)) ) (u(n) is asymptotic to 2*log(n)/n). - Benoit Cloitre, Apr 12 2003; corrected by Istvan Mezo, Oct 29 2012
Expected area of the convex hull of n points picked at random inside a triangle with unit area. - Eric W. Weisstein, Apr 15 2004

Examples

			0, 0, 1/12, 1/6, 43/180, 3/10, 197/560, 499/1260, 5471/12600, ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    seq(denom(Stirling1(j+2,2)/(j+2)!*2!*(-1)^j), j=0..50);
  • Mathematica
    Table[Denominator[1 - 2*HarmonicNumber[n - 1]/n], {n, 2, 30}] (* Wesley Ivan Hurt, Mar 24 2014 *)

Formula

G.f.: (-log(1-x))^2 (for fractions A002547(n)/A002548(n)).
A002547(n)/a(n) = 2*Stirling_1(n+2, 2)(-1)^n/(n+2)!.

Extensions

More terms, GF, formula, Maple code from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 16 2007