A002556 Odd squarefree numbers with an odd number of prime factors that have no prime factors greater than 31.
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 105, 165, 195, 231, 255, 273, 285, 345, 357, 385, 399, 429, 435, 455, 465, 483, 561, 595, 609, 627, 651, 663, 665, 715, 741, 759, 805, 897, 935, 957, 969, 1001, 1015, 1023, 1045, 1085, 1105, 1131, 1173, 1209, 1235, 1265
Offset: 1
References
- H. Gupta, A formula for L(n), J. Indian Math. Soc., 7 (1943), 68-71.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Robert Israel, Table of n, a(n) for n = 1..512
- H. Gupta, A formula for L(n), J. Indian Math. Soc., 7 (1943), 68-71. [Annotated scanned copy]
Programs
-
Magma
a:= func< n | Factorization(n)>; [n: n in [3..1265 by 2] | IsSquarefree(n) and (-1)^&+[p[2]: p in a(n)] eq -1 and f[#f][1] le 31 where f is a(n)]; // Arkadiusz Wesolowski, Jan 21 2016
-
Maple
S:= select(t -> (nops(t)::odd), combinat:-powerset(select(isprime, [seq(i,i=3..31,2)]))): sort(map(convert,S,`*`)); # Robert Israel, Jan 21 2016
-
Mathematica
osfnQ[n_]:=SquareFreeQ[n]&&OddQ[PrimeOmega[n]]&&Max[FactorInteger[n][[All, 1]]]<32; Select[Range[1,1301,2],osfnQ] (* Harvey P. Dale, Jul 19 2019 *)
-
PARI
isok(n) = (n % 2) && issquarefree(n) && (omega(n) % 2) && (vecmax(factor(n)[,1]) <= 31); \\ Michel Marcus, Jan 21 2016
Extensions
Name changed and sequence extended by Arkadiusz Wesolowski, Jan 21 2016
Comments