A002580 Decimal expansion of cube root of 2.
1, 2, 5, 9, 9, 2, 1, 0, 4, 9, 8, 9, 4, 8, 7, 3, 1, 6, 4, 7, 6, 7, 2, 1, 0, 6, 0, 7, 2, 7, 8, 2, 2, 8, 3, 5, 0, 5, 7, 0, 2, 5, 1, 4, 6, 4, 7, 0, 1, 5, 0, 7, 9, 8, 0, 0, 8, 1, 9, 7, 5, 1, 1, 2, 1, 5, 5, 2, 9, 9, 6, 7, 6, 5, 1, 3, 9, 5, 9, 4, 8, 3, 7, 2, 9, 3, 9, 6, 5, 6, 2, 4, 3, 6, 2, 5, 5, 0, 9, 4, 1, 5, 4, 3, 1, 0, 2, 5
Offset: 1
Examples
1.2599210498948731647672106072782283505702514...
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 192-193.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.4 Irrational Numbers and §12.3 Euclidean Construction, pp. 84, 421.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Horace S. Uhler, Many-figure approximations for cubed root of 2, cubed root of 3, cubed root of 4, and cubed root of 9 with chi2 data. Scripta Math. 18, (1952). 173-176.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, pp. 33-34.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- Laszlo C. Bardos, Double a Cube, CutOutFoldUp.
- Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 62.
- Wolfdieter Lang, Notes on Some Geometric and Algebraic Problems solved by Origami, arXiv:1409.4799 [math.MG], 2014.
- Liz Newton, The power of origami.
- Raul Prisacariu, Lill's method and the Philo Line for Right Angles.
- Simon Plouffe, Plouffe's Inverter, The cube root of 2 to 20000 digits.
- Simon Plouffe, 2**(1/3) to 2000 places.
- Simon Plouffe, Generalized expansion of real constants.
- H. S. Uhler, Many-figure approximations for cubed root of 2, cubed root of 3, cubed root of 4, and cubed root of 9 with chi2 data, Scripta Math. 18, (1952). 173-176. [Annotated scanned copies of pages 175 and 176 only]
- Eric Weisstein's World of Mathematics, Delian Constant.
- Index entries for algebraic numbers, degree 3.
Crossrefs
Programs
-
Maple
Digits:=100: evalf(2^(1/3)); # Wesley Ivan Hurt, Nov 12 2015
-
Mathematica
RealDigits[N[2^(1/3), 5!]] (* Vladimir Joseph Stephan Orlovsky, Sep 04 2008 *)
-
PARI
default(realprecision, 20080); x=2^(1/3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002580.txt", n, " ", d)); \\ Harry J. Smith, May 07 2009
-
PARI
default(realprecision, 100); x= 2^(1/3); for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) \\ Altug Alkan, Nov 14 2015
Formula
(-2^(1/3) - 2^(1/3) * sqrt(-3))^3 = (-2^(1/3) + 2^(1/3) * sqrt(-3))^3 = 16. - Alonso del Arte, Jan 04 2015
Set c=2 in the identities c^(1/3) = sqrt(c/sqrt(c/sqrt(c/...))) = sqrt(sqrt(c*sqrt(sqrt(c*sqrt(sqrt(...)))))). - Stanislav Sykora, Nov 11 2015
Equals Product_{k>=0} (1 + (-1)^k/(3*k + 2)). - Amiram Eldar, Jul 25 2020
From Peter Bala, Mar 01 2022: (Start)
Equals Sum_{n >= 0} (1/(3*n+1) - 1/(3*n-2))*binomial(1/3,n) = (3/2)* hypergeom([-1/3, -2/3], [4/3], -1). Cf. A290570.
Equals 4/3 - 4*Sum_{n >= 1} binomial(1/3,2*n+1)/(6*n-1) = (4/3)*hypergeom ([1/2, -1/6], [3/2], 1).
Equals hypergeom([-2/3, -1/6], [1/2], 1).
Equals hypergeom([2/3, 1/6], [4/3], 1). (End)
Comments