A002593 a(n) = n^2*(2*n^2 - 1); also Sum_{k=0..n-1} (2k+1)^3.
0, 1, 28, 153, 496, 1225, 2556, 4753, 8128, 13041, 19900, 29161, 41328, 56953, 76636, 101025, 130816, 166753, 209628, 260281, 319600, 388521, 468028, 559153, 662976, 780625, 913276, 1062153, 1228528, 1413721, 1619100, 1846081
Offset: 0
References
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 169, #31.
- F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
- L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 47.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- F. E. Croxton and D. J. Cowden, Applied General Statistics, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1955. [Annotated scans of just pages 742-743]
- Neslihan Kilar, Abdelmejid Bayad, and Yilmaz Simsek, Finite sums involving trigonometric functions and special polynomials: analysis of generating functions and p-adic integrals, Appl. Anal. Disc. Math., hal-04535748, 2024. See p. 22.
- Vladimir Pletser, File Triplets (M,a,c) for M=2n^2
- Vladimir Pletser, General solutions of sums of consecutive cubed integers equal to squared integers, arXiv:1501.06098 [math.NT], 2015.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
- G. Xiao, Sigma Server, Operate on "(2*n-1)^3".
- M. J. Zerger, Proof without words: The sum of consecutive odd cubes is a triangular number, Math. Mag., 68 (1995), 371.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n^2*(2*n^2 - 1): n in [0..40]]; // Vincenzo Librandi, Sep 07 2011
-
Maple
A002593:=-z*(z+1)*(z**2+22*z+1)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation a:= n-> n^2*(2*n^2-1): seq(a(n), n=0..50); # Vladimir Pletser, Jan 10 2015
-
Mathematica
CoefficientList[Series[(-x^4-23x^3-23x^2-x)/(x-1)^5,{x,0, 80}],x] (* or *) Table[ n^2 (2n^2-1),{n,0,80}] (* Harvey P. Dale, Mar 28 2011 *) Join[{0},Accumulate[Range[1,91,2]^3]] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,28,153,496},40] (* Harvey P. Dale, Mar 22 2017 *)
-
PARI
a(n) = n^2*(2*n^2 - 1) \\ Charles R Greathouse IV, Feb 07 2017
Formula
G.f.: (-x^4 - 23*x^3 - 23*x^2 - x)/(x - 1)^5. - Harvey P. Dale, Mar 28 2011
a(n) = n^2*(2n^2 - 1). - Vladimir Pletser, Jan 10 2015
E.g.f.: exp(x)*x*(1 + 13*x + 24*x^2/2! + 12*x^3/3!). - Wolfdieter Lang, Mar 11 2017
From Amiram Eldar, Aug 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 1 - Pi^2/6 - cot(Pi/sqrt(2))*Pi/sqrt(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = cosec(Pi/sqrt(2))*Pi/sqrt(2) - Pi^2/12 - 1. (End)
Comments