cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002595 Denominators of Taylor series expansion of arcsin(x). Also arises from arccos(x), arccsc(x), arcsec(x), arcsinh(x).

Original entry on oeis.org

1, 6, 40, 112, 1152, 2816, 13312, 10240, 557056, 1245184, 5505024, 12058624, 104857600, 226492416, 973078528, 2080374784, 23622320128, 30064771072, 635655159808, 446676598784, 11269994184704, 23639499997184, 6597069766656
Offset: 0

Views

Author

Keywords

Comments

arcsin(x) is usually written as x + x^3/(2*3) + 1*3*x^5/(2*4*5) + 1*3*5*x^7/(2*4*6*7) + ..., = x + 1/6*x^3 + 3/40*x^5 + 5/112*x^7 + 35/1152*x^9 + 63/2816*x^11 + ... when reduced to lowest terms.
arccos(x) = Pi/2 - (x + 1/6*x^3 + 3/40*x^5 + 5/112*x^7 + 35/1152*x^9 + 63/2816*x^11 + ...).
arccsc(x) = 1/x+1/(6*x^3)+3/(40*x^5)+5/(112*x^7)+35/(1152*x^9)+63/(2816*x^11)+...
arcsec(x) = Pi/2 -(1/x+1/(6*x^3)+3/(40*x^5)+5/(112*x^7)+35/(1152*x^9)+63/(2816*x^11)+...)
arcsinh(x) = x-1/6*x^3+3/40*x^5-5/112*x^7+35/1152*x^9-63/2816*x^11+...
arccsc(x) = arcsin(1/x) and arcsec(x) = arccos(1/x): 1 < |x|
arccsch(x) = arcsinh(1/x) for 1 < |x|
Also denominator of (2n-1)!! / ((2n+1)*(2n)!!) (n=>0).

References

  • W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
  • H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, Chap. 3.
  • Focus, vol. 16, no. 5, page 32, Oct 1996.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 31, equation 31:6:1 at page 290.

Crossrefs

A055786(n) / a(n) = A001147(n) / ( A000165(n) * (2*n+1))
Cf. A162443 where BG1[ -3,n] = (-1)*A002595(n-1)/A055786(n-1) for n =>1. - Johannes W. Meijer, Jul 06 2009
a(n) = 2*A143582(n+1) for n>=1. - Filip Zaludek, Oct 25 2016

Programs

  • Mathematica
    Denominator[Take[CoefficientList[Series[ArcSin[x],{x,0,50}],x],{2,-1,2}]] (* Harvey P. Dale, Aug 06 2012 *)
  • PARI
    a(n) = denominator((2*n)!/(2^(2*n)*(n)!^2*(2*n+1))); \\ Stefano Spezia, Dec 31 2024

Formula

a(n) = denominator((2*n)!/(2^(2*n)*(n)!^2*(2*n+1))). - Johannes W. Meijer, Jul 06 2009