A162443
Numerators of the BG1[ -5,n] coefficients of the BG1 matrix.
Original entry on oeis.org
5, 66, 680, 2576, 33408, 14080, 545792, 481280, 29523968, 73465856, 27525120, 856162304, 1153433600, 18798870528, 86603988992, 2080374784, 2385854332928, 3216930504704, 71829033058304, 7593502179328, 281749854617600
Offset: 1
The first few formulas for the BG1[1-2*m,n] matrix coefficients are:
BG1[ -1,n] = (1)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -3,n] = (1-2*n)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -5,n] = (1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!
The first few generating functions GFB(z;n) are:
GFB(z;2) = ((-1)*(z^2-1)*GFB(z;1) + (-1))/1
GFB(z;3) = ((+1)*(z^4-10*z^2+9)*GFB(z;1) + (-11 + z^2))/9
GFB(z;4) = ((-1)*( z^6- 35*z^4+259*z^2-225)*GFB(z;1) + (-299 + 36*z^2 - z^4))/225
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
- J. M. Amigo, Relations among Sums of Reciprocal Powers Part II, International Journal of Mathematics and Mathematical Sciences , Volume 2008 (2008), pp. 1-20.
A162444 are the denominators of the BG1[ -5, n] matrix coefficients.
The BETA(z, n) polynomials and the BS1 matrix lead to the Beta triangle
A160480.
The CFN2(z, n), the t2(n, m) and the BG2 matrix lead to
A008956.
-
a := proc(n): numer((1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!) end proc: seq(a(n), n=1..21);
# End program 1
nmax1 := 5; coln := 3; Digits := 20: mmax1 := nmax1: for n from 0 to nmax1 do t2(n, 0) := 1 od: for n from 0 to nmax1 do t2(n, n) := doublefactorial(2*n-1)^2 od: for n from 1 to nmax1 do for m from 1 to n-1 do t2(n, m) := (2*n-1)^2* t2(n-1, m-1) + t2(n-1, m) od: od: for m from 1 to mmax1 do BG1[1-2*m, 1] := euler(2*m-2) od: for m from 1 to mmax1 do BG1[2*m-1, 1] := Re(evalf(2*sum((-1)^k1/(1+2*k1)^(2*m), k1=0..infinity))) od: for m from -mmax1 +coln to mmax1 do BG1[2*m-1, coln] := (-1)^(coln+1)*sum((-1)^k1*t2(coln-1, k1)*BG1[2*m-(2*coln-1)+2*k1, 1], k1=0..coln-1)/doublefactorial(2*coln-3)^2 od;
# End program 2
# Maple programs edited by Johannes W. Meijer, Sep 25 2012
A055786
Numerators of Taylor series expansion of arcsin(x). Also arises from arccos(x), arccsc(x), arcsec(x), arcsinh(x).
Original entry on oeis.org
1, 1, 3, 5, 35, 63, 231, 143, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 9694845, 100180065, 116680311, 2268783825, 1472719325, 34461632205, 67282234305, 17534158031, 514589420475, 8061900920775, 5267108601573
Offset: 0
arcsin(x) is usually written as x + x^3/(2*3) + 1*3*x^5/(2*4*5) + 1*3*5*x^7/(2*4*6*7) + ..., which is x + 1/6*x^3 + 3/40*x^5 + 5/112*x^7 + 35/1152*x^9 + 63/2816*x^11 + ... (A055786/A002595) when reduced to lowest terms.
arccos(x) = Pi/2 - (x + (1/6)*x^3 + (3/40)*x^5 + (5/112)*x^7 + (35/1152)*x^9 + (63/2816)*x^11 + ...) (A055786/A002595).
arccsc(x) = 1/x + 1/(6*x^3) + 3/(40*x^5) + 5/(112*x^7) + 35/(1152*x^9) + 63/(2816*x^11) + ... (A055786/A002595).
arcsec(x) = Pi/2 -(1/x + 1/(6*x^3) + 3/(40*x^5) + 5/(112*x^7) + 35/(1152*x^9) + 63/(2816*x^11) + ...) (A055786/A002595).
arcsinh(x) = x - (1/6)*x^3 + (3/40)*x^5 - (5/112)*x^7 + (35/1152)*x^9 - (63/2816)*x^11 + ... (A055786/A002595).
i*Pi/2 - arccosh(x) = i*x + (1/6)*i*x^3 + (3/40)*i*x^5 + (5/112)*i*x^7 + (35/1152)*i*x^9 + (63/2816)*i*x^11 + (231/13312)*i*x^13 + (143/10240)*i*x^15 + (6435/557056)*i*x^17 + ... (A055786/A002595).
0, 1, 0, 1/6, 0, 3/40, 0, 5/112, 0, 35/1152, 0, 63/2816, 0, 231/13312, 0, 143/10240, 0, 6435/557056, 0, 12155/1245184, 0, 46189/5505024, 0, ... = A055786/A002595.
a(4) = 35 = 3*5*7*9 / gcd( 3*5*7*9, (2*4*6*8) * (2*4+1))
- Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed. 1965, ch. 4.2.6
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
- H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, Chap. 3.
- T. D. Noe, Table of n, a(n) for n=0..200
- Eric Weisstein's World of Mathematics, Inverse Cosecant.
- Eric Weisstein's World of Mathematics, Inverse Cosine.
- Eric Weisstein's World of Mathematics, Inverse Secant.
- Eric Weisstein's World of Mathematics, Inverse Sine.
- Eric Weisstein's World of Mathematics, Inverse Hyperbolic Cosecant.
- Eric Weisstein's World of Mathematics, Inverse Hyperbolic Cosine.
- Eric Weisstein's World of Mathematics, Inverse Hyperbolic Sine.
- Herbert S. Wilf, Generatingfunctionology, Academic Press, NY, 1994. See p. 54.
-
[Numerator( (n+1)*Binomial(2*n+2,n+1)/(2^(2*n+1)*(2*n+1)^2) ): n in [0..25]]; // G. C. Greubel, Jan 25 2020
-
seq( numer( (n+1)*binomial(2*n+2,n+1)/(2^(2*n+1)*(2*n+1)^2) ), n=0..25); # G. C. Greubel, Jan 25 2020
-
Numerator/@Select[CoefficientList[Series[ArcSin[x],{x,0,60}],x], #!=0&] (* Harvey P. Dale, Apr 29 2011 *)
-
vector(25, n, numerator(2*n*binomial(2*n,n)/(4^n*(2*n-1)^2)) ) \\ G. C. Greubel, Jan 25 2020
-
[numerator( (n+1)*binomial(2*n+2,n+1)/(2^(2*n+1)*(2*n+1)^2) ) for n in (0..25)] # G. C. Greubel, Jan 25 2020
A052469
Denominators in the Taylor series for arccosh(x) - log(2*x).
Original entry on oeis.org
4, 32, 96, 1024, 2560, 4096, 28672, 524288, 1179648, 5242880, 11534336, 100663296, 218103808, 939524096, 134217728, 68719476736, 146028888064, 206158430208, 1305670057984, 2199023255552, 7696581394432, 96757023244288, 202310139510784, 1125899906842624
Offset: 1
arccosh(x) = log(2x) - 1/(4*x^2) - 3/(32*x^4) - 5/(96*x^6) - ... for x>1.
- Bronstein-Semendjajew, sprawotchnik po matematikje, 6th Russian ed. 1956, ch. 4.2.6.
-
List([1..30], n-> DenominatorRat( Factorial(2*n-1)/(4^n*(Factorial(n))^2) )) # G. C. Greubel, May 18 2019
-
[Denominator(Factorial(2*n-1)/( 2^(2*n)* Factorial(n)^2)): n in [1..30]]; // Vincenzo Librandi, Jul 10 2017
-
a[n_] := Denominator[(2*n-1)!/(2^(2*n)*n!^2)]; Array[a, 21] (* Jean-François Alcover, May 17 2017 *)
-
{a(n) = denominator((2*n-1)!/(4^n*(n!)^2))}; \\ G. C. Greubel, May 18 2019
-
[denominator(factorial(2*n-1)/(4^n*(factorial(n))^2)) for n in (1..30)] # G. C. Greubel, May 18 2019
A162444
Denominators of the BG1[ -5,n] coefficients of the BG1 matrix.
Original entry on oeis.org
1, 1, 3, 5, 35, 9, 231, 143, 6435, 12155, 3553, 88179, 96577, 1300075, 5014575, 102051, 100180065, 116680311, 2268783825, 210388475, 6892326441, 67282234305, 17534158031, 39583801575, 8061900920775, 169906729083
Offset: 1
The first few formulas for the BG1[1-2*m,n] matrix coefficients are:
BG1[ -1,n] = (1)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -3,n] = (1-2*n)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -5,n] = (1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -7,n] = (1-2*n+60*n^2-120*n^3)*4^(n-1)*(n-1)!^2/(2*n-2)!
A162443 are the numerators of the BG1[ -5, n] matrix coefficients.
A091154
Numerator of Maclaurin expansion of (t*sqrt(t^2+1) + arcsinh(t))/2, the arc length of Archimedes' spiral.
Original entry on oeis.org
1, 1, -1, 1, -5, 7, -21, 11, -429, 715, -2431, 4199, -29393, 52003, -185725, 334305, -3231615, 3535767, -64822395, 39803225, -883631595, 1641030105, -407771117, 11435320455, -171529806825, 107492012277, -1215486600363, 2295919134019
Offset: 1
t + t^3/6 - t^5/40 + t^7/112 - (5*t^9)/1152 + (7*t^11)/2816 - ...
Showing 1-5 of 5 results.
Comments