cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A055786 Numerators of Taylor series expansion of arcsin(x). Also arises from arccos(x), arccsc(x), arcsec(x), arcsinh(x).

Original entry on oeis.org

1, 1, 3, 5, 35, 63, 231, 143, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 9694845, 100180065, 116680311, 2268783825, 1472719325, 34461632205, 67282234305, 17534158031, 514589420475, 8061900920775, 5267108601573
Offset: 0

Views

Author

N. J. A. Sloane, Jul 13 2000

Keywords

Comments

Note that the sequence is not monotonic.

Examples

			arcsin(x) is usually written as x + x^3/(2*3) + 1*3*x^5/(2*4*5) + 1*3*5*x^7/(2*4*6*7) + ..., which is x + 1/6*x^3 + 3/40*x^5 + 5/112*x^7 + 35/1152*x^9 + 63/2816*x^11 + ... (A055786/A002595) when reduced to lowest terms.
arccos(x) = Pi/2 - (x + (1/6)*x^3 + (3/40)*x^5 + (5/112)*x^7 + (35/1152)*x^9 + (63/2816)*x^11 + ...) (A055786/A002595).
arccsc(x) = 1/x + 1/(6*x^3) + 3/(40*x^5) + 5/(112*x^7) + 35/(1152*x^9) + 63/(2816*x^11) + ... (A055786/A002595).
arcsec(x) = Pi/2 -(1/x + 1/(6*x^3) + 3/(40*x^5) + 5/(112*x^7) + 35/(1152*x^9) + 63/(2816*x^11) + ...) (A055786/A002595).
arcsinh(x) = x - (1/6)*x^3 + (3/40)*x^5 - (5/112)*x^7 + (35/1152)*x^9 - (63/2816)*x^11 + ... (A055786/A002595).
i*Pi/2 - arccosh(x) = i*x + (1/6)*i*x^3 + (3/40)*i*x^5 + (5/112)*i*x^7 + (35/1152)*i*x^9 + (63/2816)*i*x^11 + (231/13312)*i*x^13 + (143/10240)*i*x^15 + (6435/557056)*i*x^17 + ... (A055786/A002595).
0, 1, 0, 1/6, 0, 3/40, 0, 5/112, 0, 35/1152, 0, 63/2816, 0, 231/13312, 0, 143/10240, 0, 6435/557056, 0, 12155/1245184, 0, 46189/5505024, 0, ... = A055786/A002595.
a(4) = 35 = 3*5*7*9 / gcd( 3*5*7*9, (2*4*6*8) * (2*4+1))
		

References

  • Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed. 1965, ch. 4.2.6
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
  • H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, Chap. 3.

Crossrefs

Cf. A002595.
a(n) / A002595(n) = A001147(n) / ( A000165(n) * (2*n+1))
Cf. A162443 where BG1[-3,n] = (-1)*A002595(n-1)/A055786(n-1) for n >= 1. - Johannes W. Meijer, Jul 06 2009

Programs

  • Magma
    [Numerator( (n+1)*Binomial(2*n+2,n+1)/(2^(2*n+1)*(2*n+1)^2) ): n in [0..25]]; // G. C. Greubel, Jan 25 2020
    
  • Maple
    seq( numer( (n+1)*binomial(2*n+2,n+1)/(2^(2*n+1)*(2*n+1)^2) ), n=0..25); # G. C. Greubel, Jan 25 2020
  • Mathematica
    Numerator/@Select[CoefficientList[Series[ArcSin[x],{x,0,60}],x], #!=0&]  (* Harvey P. Dale, Apr 29 2011 *)
  • PARI
    vector(25, n, numerator(2*n*binomial(2*n,n)/(4^n*(2*n-1)^2)) ) \\ G. C. Greubel, Jan 25 2020
    
  • Sage
    [numerator( (n+1)*binomial(2*n+2,n+1)/(2^(2*n+1)*(2*n+1)^2) ) for n in (0..25)] # G. C. Greubel, Jan 25 2020

Formula

a(n) / A052469(n) = A001147(n) / ( A000165(n) *2*n ). E.g., a(6) = 77 = 1*3*5*7*9*11 / gcd( 1*3*5*7*9*11, 2*4*6*8*10*12*12 ).
a(n) = numerator((2*n)!/(2^(2*n)*(n)!^2*(2*n+1))). - Johannes W. Meijer, Jul 06 2009

Extensions

Edited by Johannes W. Meijer, Jul 06 2009

A052468 Numerators in the Taylor series for arccosh(x) - log(2*x).

Original entry on oeis.org

1, 3, 5, 35, 63, 77, 429, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 646323, 300540195, 583401555, 756261275, 4418157975, 6892326441, 22427411435, 263012370465, 514589420475, 2687300306925, 15801325804719, 61989816618513, 121683714103007
Offset: 1

Views

Author

Keywords

Comments

A055786 is the preferred version of this sequence.

Examples

			i*Pi/2 - arccosh(x) = i*x + (1/6)*i*x^3 + (3/40)*i*x^5 + (5/112)*i*x^7 + (35/1152)*i*x^9 + (63/2816)*i*x^11 + (231/13312)*i*x^13 + (143/10240)*i*x^15 + (6435/557056)*i*x^17 + ...
0, 1, 0, 1/6, 0, 3/40, 0, 5/112, 0, 35/1152, 0, 63/2816, 0, 231/13312, 0, 143/10240, 0, 6435/557056, 0, 12155/1245184, 0, 46189/5505024, 0, ... = A052468/A052469
		

Crossrefs

See A055786 for further information.
a(n)/A052469(n) = (1/(2*n))*A001790(n)/A046161(n) for n=>1.
Equals A162441(n+1)/(2n+1) for n=>1. - Johannes W. Meijer, Jul 06 2009

Programs

  • GAP
    List([1..30], n-> NumeratorRat( Factorial(2*n-1)/(4^n*(Factorial(n))^2) )) # G. C. Greubel, May 18 2019
  • Magma
    [Numerator(Factorial(2*n-1)/( 2^(2*n)* Factorial(n)^2)): n in [1..30]]; // Vincenzo Librandi, Jul 10 2017
    
  • Mathematica
    a [n_]:=Numerator[(2 n - 1)! / (2^(2 n) n!^2)]; Array[a, 40] (* Vincenzo Librandi, Jul 10 2017 *)
  • PARI
    {a(n) = numerator((2*n-1)!/(4^n*(n!)^2))}; \\ G. C. Greubel, May 18 2019
    
  • Sage
    [numerator(factorial(2*n-1)/(4^n*(factorial(n))^2)) for n in (1..30)] # G. C. Greubel, May 18 2019
    

Formula

a(n)/A052469(n) = A001147(n)/(A000165(n)*2*n). E.g., a(6) = 77 = 1*3*5*7*9*11 / gcd( 1*3*5*7*9*11, 2*4*6*8*10*12*12 ).
a(n) = numerator((2*n-1)!/(4^n * (n!)^2)). - Johannes W. Meijer, Jul 06 2009
Let z(n) = 2*(2*n+1)!*4^(-n-1)/((n+1)!)^2, then a(n) = numerator(z(n)), A162442(n) = denominator(z(n)), and z(n) = 1/(n+1) - Sum_{k=0..n}(-1)^k*binomial(n,k)*z(k). - Groux Roland, Jan 04 2011
a(n) = numerator(binomial(2n,n)/(n*2^(2n-1))). - Daniel Suteu, Oct 30 2017

Extensions

Updated by Frank Ellermann, May 22 2011
Cross-references edited by Johannes W. Meijer, Jul 05 2009

A162442 Denominators of the column sums of the EG1 matrix coefficients.

Original entry on oeis.org

2, 16, 48, 512, 1280, 2048, 14336, 262144, 589824, 2621440, 5767168, 50331648, 109051904, 469762048, 67108864, 34359738368, 73014444032, 103079215104, 652835028992, 1099511627776, 3848290697216, 48378511622144
Offset: 2

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

For the definition of the EG1 matrix coefficients see A162440.
We define the columns sums by cs(n) = sum(EG1[2*m-1,n], m = 1.. infinity) for n => 2.

Crossrefs

Equals A052469(n-1)/2 for n=>2.
cs(n) = (1/(n-1))*A001803(n-1)/A046161(n-1) for n=>2.
Cf. A162440 and A162441.

Formula

a(n) = denom(cs(n)) and numer(cs(n)) = A162441(n) with cs(n) = (2^(2-2*n)/(n-1))*((2*n-1)!/((n-1)!^2)).
a(n) = denom((1/(n-1))*(2*n-1)*binomial(2*n-2,n-1)/4^(n-1))
Showing 1-3 of 3 results.