cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A030212 Glaisher's chi_4(n).

Original entry on oeis.org

1, -4, 0, 16, -14, 0, 0, -64, 81, 56, 0, 0, -238, 0, 0, 256, 322, -324, 0, -224, 0, 0, 0, 0, -429, 952, 0, 0, 82, 0, 0, -1024, 0, -1288, 0, 1296, 2162, 0, 0, 896, -3038, 0, 0, 0, -1134, 0, 0, 0, 2401, 1716, 0, -3808, 2482, 0, 0, 0, 0, -328, 0, 0, -6958, 0, 0, 4096, 3332, 0, 0, 5152, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Number 10 of the 74 eta-quotients listed in Table I of Martin (1996). Cusp form level 4 weight 5.
Called chi_4(n) by Glaisher and Hardy because as Glaisher (1907) writes on page 21 "It can be shown (see section 53) that chi_4(n) admits of an arithmetical definition, being in fact equal to one-fourth of the sum of the fourth powers of all complex numbers which have n as norm, viz. chi_4(n) = 1/4 sum_n (a + i b)^4, where a + i b is any number which has n for norm. It is in consequence of this definition that the notation chi_4(n) has been used." - Michael Somos, Jun 18 2012
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 4*q^2 + 16*q^4 - 14*q^5 - 64*q^8 + 81*q^9 + 56*q^10 - 238*q^13 + ...
From _Seiichi Manyama_, Apr 25 2017: (Start)
a(1) = (1 + 0i)^4 = 1,
a(2) = (1 + 1i)^4 = -4,
a(4) = (2 + 0i)^4 = 16,
a(5) = (1 + 2i)^4 + (2 + 1i)^4 = -7 - 24i - 7 + 24i = -14,
a(8) = (2 + 2i)^4 = -64,
a(9) = (3 + 0i)^4 = 81,
a(10) = (1 + 3i)^4 + (3 + 1i)^4 = 28 - 96i + 28 + 96i = 56 (End)
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Chelsea Publishing Company, New York 1959, p. 135 section 9.3. MR0106147 (21 #4881)
  • H. McKean and V. Moll, Elliptic Curves, Cambridge University Press, 1997, page 175, 4.7 Exercise 5. MR1471703 (98g:14032)

Crossrefs

Programs

  • Magma
    Basis( CuspForms( Gamma1(4), 5), 71) [1]; /* Michael Somos, May 27 2014 */
  • Mathematica
    If[SquaresR[2,#]==0,0,1/4 Plus@@((x+I y)^4/.{ToRules[Reduce[x^2+y^2==#,{x,y},Integers]]})] &/@Range[70] (* Ant King, Nov 10 2012 *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q]^2 QPochhammer[ q^2] QPochhammer[ q^4]^2)^2, {q, 0, n}]; (* Michael Somos, May 28 2013 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A))^4 * eta(x^2 + A)^2, n))}; /* Michael Somos, Jul 17 2004 */
    
  • PARI
    {a(n) = local(r); if( n<1, 0, r = sqrtint(n); sum( x=-r, r, sum( y=-r, r, if( x^2 + y^2 == n, (x + I*y)^4) )) / 4 )}; /* Michael Somos, Sep 12 2005 */
    
  • PARI
    {a(n) = my(A, p, e, x, y, z, a0, a1); if( n<0, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, (-4)^e, p%4 == 3, if( e%2, 0, p^(2*e)), forstep( i=0, sqrtint(p), 2, if( issquare( p - i^2, &y), x = i; break)); a0 = 1; a1 = x = real( (x + I*y)^4 ) * 2; for( i=2, e, y = x*a1 - p^4*a0; a0=a1; a1=y); a1))) }; /* Michael Somos, Nov 18 2014 */
    
  • Sage
    CuspForms( Gamma1(4), 5, prec=71).0; # Michael Somos, May 28 2013
    

Formula

Expansion of phi(q)^2 * psi(-q)^8 = chi(q)^6 * psi(-q)^10 = f(q)^3 * psi(-q)^7 = f(-q^2)^6 * psi(-q)^4 = f(-q^2)^10 / chi(q)^4 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Mar 12 2013
Expansion of eta(q)^4 * eta(q^2)^2 * eta(q^4)^4 in powers of q.
G.f.: x * (Product_{k>0} (1 - x^k)^4 * (1 - x^(2*k))^2 * (1 - x^(4*k))^4).
G.f.: (t*t'' - 3(t')^2) / 2 where t = theta_3(x) (A000122) and t' := x * (dt/dx), t'' := (t')'. - Michael Somos, Nov 08 2005
Euler transform of period 4 sequence [ -4, -6, -4, -10, ...]. - Michael Somos, Jul 17 2004
a(n) is multiplicative with a(2^e) = (-4)^e, a(p^e) = p^(2*e) * (1 + (-1)^e)/2 if p == 3 (mod 4), a(p^e) = a(p) * a(p^(e-1)) - p^4 * a(p^(e-2)) for p == 1 (mod 4) where a(p) = 2 * Re( (x + i*y)^4 ) and p = x^2 + y^2 with even x. - Michael Somos, Nov 18 2014
Given A = A0 + A1 + A2 + A3 is the 4-section, then 0 = (A0^2 - A2^2)^2 + 4 * A0*A2*A1^2. - Michael Somos, Mar 08 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 32 (t/i)^5 f(t) where q = exp(2 Pi i t). - Michael Somos, May 28 2013
a(4*n + 3) = 0. - Michael Somos, Mar 12 2013
a(2*n) = -4 * a(n). a(4*n + 1) = A215472(n). - Michael Somos, Sep 05 2013
a(n) = 1/4 * Sum_{a^2 + b^2 = n} (a + bi)^4 = Sum_{a > 0, b >= 0, a^2 + b^2 = n} (a + bi)^4. - Seiichi Manyama, Apr 25 2017

A247067 Glaisher's chi_12(n).

Original entry on oeis.org

1, -64, 0, 4096, 23506, 0, 0, -262144, 531441, -1504384, 0, 0, 6911282, 0, 0, 16777216, -47295038, -34012224, 0, 96280576, 0, 0, 0, 0, 308391411, -442322048, 0, 0, -173439758, 0, 0, -1073741824, 0, 3026882432, 0, 2176782336, -2050092718, 0, 0, -6161956864
Offset: 1

Views

Author

Michael Somos, Nov 16 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 64*q^2 + 4096*q^4 + 23506*q^5 - 262144*q^8 + 531441*q^9 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( CuspForms( Gamma1(4), 13), 40); A[1] - 64*A[2] + 4096*A[4] + 23506*A[5];
  • Mathematica
    a[ n_] := SeriesCoefficient[ q EllipticTheta[3, 0, q]^2 QPochhammer[ q^2]^24 (QPochhammer[ -q, q^2]^24 - 92 q + 16 q^2/QPochhammer[ -q, q^2]^24), {q, 0, n}];
  • PARI
    {a(n) = my(r); if( n<1, 0, r = sqrtint(n); sum( x=-r, r, sum( y=-r, r, if( x^2 + y^2 == n, (x + I*y)^12) )) / 4 ) };
    
  • PARI
    {a(n) = local(A, p, e, x, y, z, a0, a1); if( n<0, 0, A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e = A[k, 2]; if( p==2, (-64)^e, if( p%4 == 3, if( e%2, 0, p^(6*e)), forstep( i=0, sqrtint(p), 2, if( issquare( p - i^2, &y), x = i; break)); a0 = 1; a1 = x = real( (x + I*y)^12 ) * 2; for( i=2, e, y = x*a1 - p^12*a0; a0=a1; a1=y); a1))))) }; /* Michael Somos, Nov 18 2014 */
    

Formula

Expansion of q * f(-x^2)^24 * phi(q)^2 * (chi(q)^24 - 92*q + 16*q^2 / chi(q)^24) in powers of q where phi(), chi(), f() are Ramanujan theta functions.
a(n) is multiplicative with a(2^e) = (-64)^e, a(p^e) = p^(6*e) * (1 + (-1)^e)/2 if p == 3 (mod 4), a(p^e) = a(p) * a(p^(e-1)) - p^12 * a(p^(e-2)) if p == 1 (mod 4) where a(p) = 2 * Re( (x + i*y)^12 ) and p = x^2 + y^2 with even x. - Michael Somos, Nov 18 2014
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2^13 (t/i)^13 f(t) where q = exp(2 Pi i t).
G.f.: ( Sum_{j,k in Z} (j + i*k)^12 * x^(j^2 + k^2) ) / 4, where i^2 = -1.
a(2*n) = (-4)^3 * a(n). a(4*n + 3) = 0.

A002608 Glaisher's function T(2n+1).

Original entry on oeis.org

33, 524, -2322, 81912, 214181, 1182276, 3736614, 9972264, 24622002, 51265020, 106396576, 202547304, 357914103, 613924280, 1011319830, 1625884896, 2508545328, 3777689232, 5589515982, 8076649672, 11456490906, 15968552484, 22005025446
Offset: 0

Views

Author

Keywords

References

  • J. W. L. Glaisher, On the representation of a number as sum of 18 squares, Quart. J. Math. 38 (1907), 289-351 (see p. 305). [The whole 1907 volume of The Quarterly Journal of Pure and Applied Mathematics, volume 38, is freely available from Google Books]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002607.

Formula

See equation (i) of Section 38 of Glaisher (1907), which defines this in terms of A002607.

Extensions

Entry revised (signs added) by N. J. A. Sloane, Nov 26 2018
More terms from Sean A. Irvine, Mar 03 2019
Showing 1-3 of 3 results.