A002645 Quartan primes: primes of the form x^4 + y^4, x > 0, y > 0.
2, 17, 97, 257, 337, 641, 881, 1297, 2417, 2657, 3697, 4177, 4721, 6577, 10657, 12401, 14657, 14897, 15937, 16561, 28817, 38561, 39041, 49297, 54721, 65537, 65617, 66161, 66977, 80177, 83537, 83777, 89041, 105601, 107377, 119617, 121937
Offset: 1
Examples
a(1) = 2 = 1^4 + 1^4. a(2) = 17 = 1^4 + 2^4. a(3) = 97 = 2^4 + 3^4. a(4) = 257 = 1^4 + 4^4.
References
- A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
- N. D. Elkies, Primes of the form a^4 + b^4, Mathematical Buds, Ed. H. D. Ruderman Vol. 3 Chap. 3 pp. 22-8 Mu Alpha Theta 1984.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- A. J. C. Cunningham, High quartan factorisations and primes, Messenger of Mathematics 36 (1907), pp. 145-174.
- A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. [Annotated scans of a few pages from Volumes 1 and 2]
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
Crossrefs
Programs
-
Haskell
a002645 n = a002645_list !! (n-1) a002645_list = 2 : (map a000040 $ filter ((> 1) . a256852) [1..]) -- Reinhard Zumkeller, Apr 11 2015
-
Mathematica
nn = 100000; Sort[Reap[Do[n = a^4 + b^4; If[n <= nn && PrimeQ[n], Sow[n]], {a, nn^(1/4)}, {b, a}]][[2, 1]]] With[{nn=20},Select[Union[Flatten[Table[x^4+y^4,{x,nn},{y,nn}]]],PrimeQ[ #] && #<=nn^4+1&]] (* Harvey P. Dale, Aug 10 2021 *)
-
PARI
upto(lim)=my(v=List(2),t);forstep(x=1,lim^.25,2,forstep(y=2,(lim-x^4)^.25,2,if(isprime(t=x^4+y^4),listput(v,t))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 05 2011
-
PARI
list(lim)=my(v=List([2]),x4,t); for(x=1,sqrtnint(lim\=1,4), x4=x^4; forstep(y=1+x%2,min(sqrtnint(lim-x4,4), x-1),2, if(isprime(t=x4+y^4), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Aug 20 2017
Formula
Extensions
More terms from Victoria A Sapko (vsapko(AT)canes.gsw.edu), Nov 07 2002
Comments