A002646 Half-quartan primes: primes of the form p = (x^4 + y^4)/2.
41, 313, 353, 1201, 3593, 4481, 7321, 8521, 10601, 14281, 14321, 14593, 21601, 26513, 32633, 41761, 41801, 42073, 42961, 49081, 56041, 66361, 67073, 72481, 90473, 97241, 97553, 104561, 106921, 111521, 139921, 141121, 165233, 195353, 198593
Offset: 1
Examples
41 is in the sequence since it is prime and 41 = (3^4 + 1^4)/2. - _Michael B. Porter_, Jul 07 2016
References
- A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 41, p. 16, Ellipses, Paris 2008.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- A. J. C. Cunningham, High quartan factorisations and primes, Messenger of Mathematics 36 (1907), pp. 145-174.
- A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. [Annotated scans of a few pages from Volumes 1 and 2]
- Tim Evink, Jaap Top, and Jakob Dirk Top, A remark on prime (non)congruent numbers, arXiv:2105.01450 [math.NT], 2021. See p. 12.
Programs
-
Haskell
a002646 n = a002646_list !! (n-1) a002646_list = [hqp | x <- [1, 3 ..], y <- [1, 3 .. x - 1], let hqp = div (x ^ 4 + y ^ 4) 2, a010051' hqp == 1] -- Reinhard Zumkeller, Jul 15 2013
-
Maple
N:= 10^6: # to get all terms <= N sort(select(isprime, convert({seq(seq((x^4+y^4)/2, y=x..floor((2*N-x^4)^(1/4)),2),x=1..floor((2*N-1)^(1/4)),2)},list))); # Robert Israel, Jul 11 2016
-
Mathematica
nmax = 200000; jmax = Floor[(nmax/8)^(1/4)]; s = {}; Do[n = ((2 j + 1)^4 + (2 k + 1)^4)/2; If[n <= nmax && PrimeQ[n], AppendTo[s, n]], {j, 0, jmax}, {k, j, jmax}]; Union[s] (* Jean-François Alcover, Mar 23 2011 *) Sort[Select[Total/@(Union[Sort/@Tuples[Range[0,50],2]]^4)/2,PrimeQ]] (* Harvey P. Dale, Feb 12 2012 *)
Extensions
More terms from Len Smiley
Comments