cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002646 Half-quartan primes: primes of the form p = (x^4 + y^4)/2.

Original entry on oeis.org

41, 313, 353, 1201, 3593, 4481, 7321, 8521, 10601, 14281, 14321, 14593, 21601, 26513, 32633, 41761, 41801, 42073, 42961, 49081, 56041, 66361, 67073, 72481, 90473, 97241, 97553, 104561, 106921, 111521, 139921, 141121, 165233, 195353, 198593
Offset: 1

Views

Author

Keywords

Comments

The 1001-digit number ((10^250 + 5659)^4 + (10^250 + 5661)^4)/2 is currently the largest known half-quartan prime. - Paul Muljadi, Mar 03 2011
The largest known is now ((2*3960926^2048 + 1)^4 + 1^4)/2 with 54051 digits. - Jens Kruse Andersen, Mar 20 2011
Primes of the form p = a^2 + b^2 with a > b > 0 such that a + b and a - b are squares. - Thomas Ordowski, Jul 07 2016
Primes p = a^2 + b^2 with a > b > 0 such that a^2 - b^2 is a square. - Thomas Ordowski, Feb 14 2017
Primes p > 5 such that the Diophantine equation X^4 + Y^2 = p^2 has a solution X,Y with nonzero X. Then X must be odd. - Thomas Ordowski and Robert G. Wilson v, Nov 29 2017

Examples

			41 is in the sequence since it is prime and 41 = (3^4 + 1^4)/2. - _Michael B. Porter_, Jul 07 2016
		

References

  • A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 41, p. 16, Ellipses, Paris 2008.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002646 n = a002646_list !! (n-1)
    a002646_list = [hqp | x <- [1, 3 ..], y <- [1, 3 .. x - 1],
                          let hqp = div (x ^ 4 + y ^ 4) 2, a010051' hqp == 1]
    -- Reinhard Zumkeller, Jul 15 2013
  • Maple
    N:= 10^6: # to get all terms <= N
    sort(select(isprime, convert({seq(seq((x^4+y^4)/2, y=x..floor((2*N-x^4)^(1/4)),2),x=1..floor((2*N-1)^(1/4)),2)},list))); # Robert Israel, Jul 11 2016
  • Mathematica
    nmax = 200000; jmax = Floor[(nmax/8)^(1/4)]; s = {}; Do[n = ((2 j + 1)^4 + (2 k + 1)^4)/2; If[n <= nmax && PrimeQ[n], AppendTo[s, n]], {j, 0, jmax}, {k, j,  jmax}]; Union[s] (* Jean-François Alcover, Mar 23 2011 *)
    Sort[Select[Total/@(Union[Sort/@Tuples[Range[0,50],2]]^4)/2,PrimeQ]] (* Harvey P. Dale, Feb 12 2012 *)

Extensions

More terms from Len Smiley