A030201 Expansion of eta(q^3)*eta(q^21).
0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.
Crossrefs
Programs
-
Mathematica
q QPochhammer[q^3] QPochhammer[q^21] + O[q]^105 // CoefficientList[#, q]& (* Jean-François Alcover, Sep 06 2019 *)
-
PARI
seq(n)={concat([0], Vec(eta(x^3 + O(x*x^n)) * eta(x^21 + O(x*x^n))))} \\ Andrew Howroyd, Aug 05 2018
Formula
Expansion of x * Product_{k>=1} (1 - x^(3*k)) * (1 - x^(21*k)). - Seiichi Manyama, Oct 18 2016
a(3*n + 1) = A002655(n), a(3*n) = a(3*n + 2) = 0. - Andrew Howroyd, Aug 05 2018
Comments