A002658 a(0) = a(1) = 1; for n > 0, a(n+1) = a(n)*(a(0) + ... + a(n-1)) + a(n)*(a(n) + 1)/2.
1, 1, 2, 7, 56, 2212, 2595782, 3374959180831, 5695183504489239067484387, 16217557574922386301420531277071365103168734284282
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- David Wasserman, Table of n, a(n) for n = 0..13
- Mayfawny Bergmann, Efficiency of Lossless Compression of a Binary Tree via its Minimal Directed Acyclic Graph Representation. Rose-Hulman Undergraduate Mathematics Journal: Vol. 15 : Iss. 2, Article 1. (2014).
- Luc Devroye, Michael R. Doboli, Noah A. Rosenberg, and Stephan Wagner, Tree height and the asymptotic mean of the Colijn-Plazzotta rank of unlabeled binary rooted trees, arXiv:2409.18956 [math.CO], 2024. See p. 5.
- A. Erdelyi and I. M. H. Etherington, Some problems of non-associative combinations (II), Edinburgh Math. Notes, 32 (1940), pp. vii-xiv.
- I. M. H. Etherington, Non-associate powers and a functional equation, Math. Gaz. 21 (1937), 36-39; addendum 21 (1937), 153.
- I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162. [Annotated scanned copy]
- I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
- F. Harary, et al., Counting free binary trees admitting a given height, J. Combin. Inform. System Sci. 17 (1992), no. 1-2, 175--181. MR1216977 (94c:05039)
- Frank Harary, Edgar M. Palmer, and Robert W. Robinson, Counting free binary trees admitting a given height, J. Combin. Inform. System Sci. 17 (1992), no. 1-2, 175-181. (Annotated scanned copy)
- Z. A. Melzak, A note on homogeneous dendrites, Canad. Math. Bull., 11 (1968), 85-93.
- David E. Narváez, Proof of polynomial recursive equation of order 2, Jun 05 2025.
- Sergey Zimnitskiy, Illustration of initial terms of A006894 and A002658
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
- Index entries for "core" sequences
Programs
-
Haskell
a002658 n = a002658_list !! n a002658_list = 1 : 1 : f [1,1] where f (x:xs) = y : f (y:x:xs') where y = x * sum xs + x * (x + 1) `div` 2 -- Reinhard Zumkeller, Apr 10 2012
-
Maple
s := proc(n) local i,j,ans; ans := [ 1 ]; for i to n do ans := [ op(ans),ans[ i ]*(add(j,j=ans)-ans[ i ])+ans[ i ]*(ans[ i ]+1)/2 ] od; RETURN(ans); end; t1 := s(10); A002658 := n->t1[n];
-
Mathematica
Clear[a, b]; a[0] = a[1] = 1; b[0] = b[1] = 1; b[n_] := b[n] = b[n-1] + a[n-1]; a[n_] := a[n] = (a[n-1]+1)*a[n-1]/2 + a[n-1]*b[n-1]; Table[a[n], {n, 0, 9}] (* Jean-François Alcover, Jan 31 2013, after Frank Harary *) RecurrenceTable[{a[n] == a[n-1]*(a[n-1]/a[n-2]+(a[n-1]+a[n-2])/2), a[0]==1, a[1]==1},a,{n,0,10}] (* Vaclav Kotesovec, May 21 2015 *)
-
PARI
{a(n) = local(a1, a2); if( n<2, n>=0, a2 = a(n-1); a1 = a(n-2); a2 * (a2 / a1 + (a1 + a2) / 2))} /* Michael Somos, Mar 06 2012 */
-
PARI
print1(s=a=1);for(i=1,9,print1(","a*=(1-a)/2+s);s+=a) \\ M. F. Hasler, Jan 21 2015
-
Python
from itertools import islice def agen(): yield 1 an = s = 1 while True: yield an an1 = an*s + an*(an+1)//2 an, s = an1, s+an print(list(islice(agen(), 10))) # Michael S. Branicky, Nov 14 2022
Formula
a(n + 1) = a(n) * (a(n) / a(n-1) + (a(n) + a(n-1)) / 2) [equation (5) on page 87 of Melzak 1968 with a() instead of his f()].
a(n) ~ 2 * c^(2^n), where c = 1.2460208329836625089431529441999359284665241772983812581752523573774108242448... . - Vaclav Kotesovec, May 21 2015
a(n) = (-1/4)*(a(n-2)^3 - 2*a(n-1)^2 - 6*a(n-1)*a(n-2) - 4*a(n-2)^2 - 8*a(n-1) + 11*a(n-2)) (see Narváez link for proof). - Boštjan Gec, Dec 03 2024
Extensions
Corrected by David Wasserman, Nov 20 2006
Comments