A002690 a(n) = (n+1) * (2*n)! / n!.
1, 4, 36, 480, 8400, 181440, 4656960, 138378240, 4670265600, 176432256000, 7374868300800, 337903056691200, 16838835658444800, 906706535454720000, 52459449551308800000, 3245491278907637760000, 213796737998040637440000, 14940619102451310428160000, 1103945744792235714969600000
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- H. E. Salzer, Orthogonal polynomials arising in the evaluation of inverse Laplace transforms, Math. Comp. 9 (1955), 164-177.
- H. E. Salzer, Orthogonal polynomials arising in the evaluation of inverse Laplace transforms, Math. Comp. 9 (1955), 164-177. [Annotated scanned copy]
Programs
-
Haskell
a002690 n = a245334 (2 * n) n -- Reinhard Zumkeller, Aug 30 2014
-
Magma
[(n+1) * Factorial(2*n) /Factorial(n): n in [0..20]]; // Vincenzo Librandi, Sep 05 2011
-
Maple
with(combstruct):bin := {B=Union(Z,Prod(B,B))}: seq (count([B,bin,labeled],size=n+1)*(n+1), n=0..17); # Zerinvary Lajos, Dec 05 2007 A002690 := n -> 2^n*n!*JacobiP(n, -1/2, -n+1, 3): seq(simplify(A002690(n)), n = 0..18); # Peter Luschny, Jan 22 2025
-
Mathematica
Table[((n+1)(2n)!)/n!,{n,0,20}] (* Harvey P. Dale, Sep 04 2011 *)
-
PARI
a(n)=(n+1)*(2*n)!/n!
Formula
E.g.f.: (1-2*x)/(1-4*x)^(3/2).
a(n) = 2^n*n!*JacobiP(n, -1/2, -n+1, 3). - Peter Luschny, Jan 22 2025
Extensions
Edited by Ralf Stephan, Mar 21 2004
Comments