A002708 a(n) = Fibonacci(n) mod n.
0, 1, 2, 3, 0, 2, 6, 5, 7, 5, 1, 0, 12, 13, 10, 11, 16, 10, 1, 5, 5, 1, 22, 0, 0, 25, 20, 11, 1, 20, 1, 5, 13, 33, 30, 0, 36, 1, 37, 35, 1, 34, 42, 25, 20, 45, 46, 0, 36, 25, 32, 23, 52, 8, 5, 21, 40, 1, 1, 0, 1, 1, 43, 59, 60, 52, 66, 65, 44, 15, 1, 0, 72, 73, 50, 3, 2, 44, 1, 5, 7, 1, 82, 24
Offset: 1
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002, p. 891.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 5000 terms from T. D. Noe)
- E. Lucas, Théorie des nombres (annotated scans of a few selected pages)
Crossrefs
Programs
-
Magma
[Fibonacci(n) mod n : n in [1..120]]; // Vincenzo Librandi, Nov 19 2015
-
Maple
with(combinat): [ seq( fibonacci(n) mod n, n=1..80) ]; # second Maple program: a:= proc(n) local r, M, p; r, M, p:= <<1|0>, <0|1>>, <<0|1>, <1|1>>, n; do if irem(p, 2, 'p')=1 then r:= r.M mod n fi; if p=0 then break fi; M:= M.M mod n od; r[1, 2] end: seq(a(n), n=1..100); # Alois P. Heinz, Nov 26 2016
-
Mathematica
Table[Mod[Fibonacci[n], n], {n, 1, 100}] (* Stefan Steinerberger, Apr 18 2006 *)
-
PARI
a(n) = fibonacci(n) % n; \\ Michel Marcus, May 11 2016
-
Python
A002708_list, a, b, = [], 1, 1 for n in range(1,10**4+1): A002708_list.append(a%n) a, b = b, a+b # Chai Wah Wu, Nov 26 2015
Extensions
More terms from Stefan Steinerberger, Apr 18 2006