cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002709 Triangulations of the disk G_{n,0}.

Original entry on oeis.org

1, 1, 1, 5, 24, 133, 846, 5661, 39556, 286000, 2123329, 16112057, 124512556, 977227830, 7772368380, 62535450861, 508271324688, 4168218286276, 34455941596060, 286864341314320, 2403705165816240, 20258850167232165, 171652324167433710, 1461462393790971585, 12498416291503945764
Offset: 0

Views

Author

Keywords

Comments

Apparently, also the number of regular flexagons of order 3(n+1) (see Oakley-Wisner link pp. 149-151). - Michel Marcus, Jun 23 2013

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=0 of A262586.

Programs

  • PARI
    a(n) = {if (n % 3 == 0, k = n/3; return (binomial(12*k-1,3*k-1)/((6*k-1)*(12*k-1)));); if (n % 3 == 1, k = (n-1)/3; return (binomial(12*k+3, 3*k)/(3*(4*k+1)*(6*k+1))+2*binomial(4*k,k)/(3*(3*k+1)));); if (n % 3 == 2, k = (n-2)/3; return (binomial(12*k+7,3*k+1)/(3*(2*k+1)*(12*k+7))+4*binomial(4*k+1,k)/(3*(3*k+2))););} \\ (number of regular flexagons of order 3*n) Michel Marcus, Jun 15 2013

Extensions

Extended by Max Alekseyev, Mar 30 2009
a(22) onwards from Andrew Howroyd, Nov 23 2024