cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002737 a(n) = Sum_{j=0..n} (n+j)*binomial(n+j,j).

Original entry on oeis.org

0, 5, 35, 189, 924, 4290, 19305, 85085, 369512, 1587222, 6760390, 28601650, 120349800, 504131940, 2103781365, 8751023325, 36300541200, 150217371150, 620309379690, 2556724903590, 10520494818600, 43225511319900, 177361820257050, 726860987017074, 2975511197688624, 12168371410300700
Offset: 0

Views

Author

Keywords

Comments

The former title was "Coefficients for extrapolation".

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A331432.
Cf. A000108.

Programs

  • Magma
    [(n*(2*n+3)*Binomial(2*n+1, n+1))/(n+2): n in [0..30]]; // Vincenzo Librandi, Jan 19 2020
    
  • Maple
    t5 := n-> add(binomial(n+j,j)*(n+j),j=0..n); [seq(t5(n),n=0..40)];
    # Alternative:
    A002737 := n -> (n*(2*n + 3)*binomial(2*n+1, n+1))/(n + 2):
    seq(A002737(n), n=0..25); # Peter Luschny, Jan 18 2020
  • Mathematica
    Table[n(2n+3)Binomial[2n+1, n+1]/(n+2), {n, 0, 25}] (* Vincenzo Librandi, Jan 19 2020 *)
  • SageMath
    [n*(n+3)*catalan_number(n+2)/4 for n in (0..30)] # G. C. Greubel, Mar 23 2022

Formula

a(n) = Sum_{j=0..n} binomial(n+j,j)*(n+j). - Zerinvary Lajos, Aug 30 2006
a(n) = n*binomial(2*n+4, n+2)/4. - Zerinvary Lajos, Feb 28 2007
These 2 formulas are correct - see A331432. - N. J. A. Sloane, Jan 17 2020
a(n) = (n*(2*n + 3)*binomial(2*n + 1, n + 1))/(n + 2). - Peter Luschny, Jan 18 2020
E.g.f.: exp(2*x) * ((1 - 3*x + 8*x^2) * BesselI(1,2*x) / x - (1 - 8*x) * BesselI(0,2*x)). - Ilya Gutkovskiy, Nov 03 2021
G.f.: ((1-3*x -4*x^2)*sqrt(1-4*x) -(1-5*x))/(2*x^2*(1-4*x)^(3/2)). - G. C. Greubel, Mar 23 2022

Extensions

Entry revised by N. J. A. Sloane, Jan 18 2020