cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002740 Number of tree-rooted bridgeless planar maps with two vertices and n faces.

Original entry on oeis.org

0, 0, 0, 2, 15, 84, 420, 1980, 9009, 40040, 175032, 755820, 3233230, 13728792, 57946200, 243374040, 1017958725, 4242920400, 17631691440, 73078721100, 302202005490, 1247182879800, 5137916074200, 21132472200840, 86794082253450, 356013544661424, 1458583920435600, 5969389748449400
Offset: 0

Views

Author

Keywords

Comments

a(n) is the sum of the major indices of all Dyck words of length 2n-2. The major index of a Dyck word is the sum of the positions of those 1's that are followed by a 0. Example: a(4)=15 because the Dyck words of length 6 are 010101, 010011, 001101, 001011 and 000111 having major indices 6,2,4,3 and 0, respectively. a(n) = Sum_{k=0..n(n-1)} k*A129175(n,k). - Emeric Deutsch, Apr 20 2007

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933, p. 97.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A129175.
A diagonal of A253180.

Programs

  • Magma
    [(n-2)*Binomial(2*n-2,n-2)/2 : n in [0..30]]; // Wesley Ivan Hurt, Sep 24 2014
  • Maple
    with(combinat):for n from 0 to 22 do printf(`%d, `,n*sum(binomial(2*n, n)/(n+1)/2, k=2..n)) od: # Zerinvary Lajos, Mar 13 2007
    a:=n->sum(sum(binomial(2*n,n)/(n+1)/2, j=1..n),k=2..n): seq(a(n), n=0..25); # Zerinvary Lajos, May 09 2007
    A002740:=n->(n-2)*binomial(2*n-2,n-2)/2+0^n: seq(A002740(n), n=0..30); # Wesley Ivan Hurt, Sep 24 2014
  • Mathematica
    a[n_] := (n-1)(n-2)Binomial[2(n-1), n-1]/(2n); a[0] = 0; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 16 2011 *)
  • MuPAD
    combinat::catalan(n) *binomial(n,2) $ n = 0..22 // Zerinvary Lajos, Feb 15 2007
    
  • PARI
    a(n)=if(n<3,0,(2*(n-1))!/(2*n!*(n-3)!)); /* Joerg Arndt, Sep 28 2012 */
    

Formula

G.f.: (1/2)*(1-(1 - 6*t + 6*t^2)/(1-4*t)^(3/2)).
a(n+3) = (2*(n+2))!/(2*n!*(n+3)!). - Wolfdieter Lang
a(n+2) = Sum_{k=0..n} k*binomial(k+n, k). - Benoit Cloitre, Oct 25 2003
a(n) = Sum_{k=2..n} Sum_{j=1..n} binomial(2*n,n)/(2*(n+1)), n >= 0. - Zerinvary Lajos, May 09 2007
a(n) = (n-2)*binomial(2n-2, n-2)/2 + 0^n. - Wesley Ivan Hurt, Sep 24 2014
E.g.f.: (1 + exp(2*x) * ((2*x - 1) * BesselI(0,2*x) - x * BesselI(1,2*x))) / 2. - Ilya Gutkovskiy, Nov 03 2021
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=3} 1/a(n) = 3 - 4*Pi/(3*sqrt(3)).
Sum_{n>=3} (-1)^(n+1)/a(n) = 16*log(phi)/sqrt(5) - 3, where phi is the golden ratio (A001622). (End)

Extensions

Name clarified by Noam Zeilberger, Aug 18 2017