cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002745 Sum of logarithmic numbers.

Original entry on oeis.org

1, 5, 20, 96, 469, 3145, 20684, 173544, 1557105, 16215253, 159346604, 2230085528, 26985045333, 368730610729, 5628888393652, 97987283458928, 1475486672174337, 29097611462122437, 505383110562327268, 10970329921706735216
Offset: 1

Views

Author

Keywords

References

  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • Jeffrey Shallit, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] * DivisorSigma[1,k] * (k-1)!, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Dec 16 2019 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k)*(k-1)!*binomial(n, k)); \\ Michel Marcus, May 13 2020

Formula

a(n) = Sum_{k=1..n} A000203(k)*(k-1)!*binomial(n, k). - Vladeta Jovovic, Feb 09 2003
E.g.f.: exp(x) * Sum_{k>=1} x^k / (k*(1 - x^k)). - Ilya Gutkovskiy, Dec 11 2019
a(p) == -1 (mod p) for prime p. The pseudoprimes of this congruence are 30, 858, 1722, ... - Amiram Eldar, May 13 2020

Extensions

More terms from Vladeta Jovovic, Feb 09 2003