A346547
E.g.f.: Product_{k>=1} 1 / (1 - x^k)^exp(x).
Original entry on oeis.org
1, 1, 6, 36, 282, 2575, 28075, 340809, 4657996, 69874305, 1145441713, 20279904337, 386803154474, 7874727448757, 170678885319787, 3919163707551187, 95029714996046680, 2424604353738271201, 64940619086990938317, 1820746123923294245293, 53328181409328560026038
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[1/(1 - x^k)^Exp[x], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 20; CoefficientList[Series[Exp[Exp[x] Sum[DivisorSigma[1, k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
A002745[n_] := Sum[Binomial[n, k] DivisorSigma[1, k] (k - 1)!, {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A002745[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
A330353
Expansion of e.g.f. Sum_{k>=1} (exp(x) - 1)^k / (k * (1 - (exp(x) - 1)^k)).
Original entry on oeis.org
1, 4, 18, 112, 810, 7144, 73458, 850672, 11069370, 161190904, 2575237698, 44571447232, 836188737930, 16970931765064, 368985732635538, 8524290269083792, 208874053200038490, 5428866923032585624, 149250273758730282978, 4318265042184721248352
Offset: 1
Cf.
A000041,
A000203,
A000629,
A002745,
A008277,
A038048,
A167137,
A308555,
A330351,
A330352,
A330354.
-
nmax = 20; CoefficientList[Series[Sum[(Exp[x] - 1)^k/(k (1 - (Exp[x] - 1)^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS2[n, k] (k - 1)! DivisorSigma[1, k], {k, 1, n}], {n, 1, 20}]
A002743
Sum of logarithmic numbers.
Original entry on oeis.org
1, 1, 2, 24, -11, 1085, -2542, 64344, -56415, 4275137, -10660486, 945005248, -6010194555, 147121931021, 88135620922, 23131070531152, -120142133444319, 12007306976370081, -103897545509370542, 4923827766711915784, -19471338470911446283, 1203786171449486366205
Offset: 1
- J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Amiram Eldar, Table of n, a(n) for n = 1..449
- J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83. [Annotated scanned copy]
- J. M. Gandhi, Logarithmic Numbers and the Functions d(n) and sigma(n), The American Mathematical Monthly, Vol. 73, No. 9 (1966), pp. 959-964, alternative link.
- Index entries for sequences related to logarithmic numbers
-
a[n_] := n! * Sum[(-1)^k * DivisorSigma[1, n - k]/k!/(n - k), {k, 0, n - 1}]; Array[a, 22] (* Amiram Eldar, May 13 2020 *)
-
a(n) = sum(k=1, n, (-1)^(n-k)*sigma(k)*(k-1)!*binomial(n, k)); \\ Michel Marcus, May 13 2020
A260323
Triangle read by rows: T(n,k) = logarithmic polynomial G_k^(n)(x) evaluated at x=-1.
Original entry on oeis.org
1, 3, 2, 8, 6, 6, 24, 24, 24, 24, 89, 80, 60, 120, 120, 415, 450, 480, 360, 720, 720, 2372, 2142, 2730, 840, 2520, 5040, 5040, 16072, 17696, 10416, 21840, 6720, 20160, 40320, 40320, 125673, 112464, 151704, 184464, 15120, 60480, 181440, 362880, 362880
Offset: 1
Triangle begins:
1,
3,2,
8,6,6,
24,24,24,24,
89,80,60,120,120,
415,450,480,360,720,720,
2372,2142,2730,840,2520,5040,5040,
...
- J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83. Gives first 10 rows. [Annotated scanned copy]
-
A260323 := proc(n,r)
if r = 0 then
1 ;
elif n > r+1 then
0 ;
else
add( 1/(r-j*n)!/j,j=1..(r)/n) ;
%*r! ;
end if;
end proc:
for r from 1 to 20 do
for n from 1 to r do
printf("%a,",A260323(n,r)) ;
end do:
printf("\n") ;
end do: # R. J. Mathar, Jul 24 2015
-
T[n_, k_] := If[n == 0, 1, If[k > n+1, 0, Sum[1/(n - j*k)!/j, {j, 1, n/k}]]]*n!;
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 25 2023, after R. J. Mathar *)
A356589
a(n) = n! * Sum_{k=1..n} sigma_k(k)/(k * (n-k)!).
Original entry on oeis.org
1, 7, 74, 1896, 83829, 6169915, 634444586, 89796130088, 16407420884385, 3792452363345383, 1076168167972120354, 368657061467873013440, 149787334364400115372677, 71262783791831946810277899, 39228224120114488162020163762
Offset: 1
-
a[n_] := n! * Sum[DivisorSigma[k, k]/(k*(n - k)!), {k, 1, n}]; Array[a, 15] (* Amiram Eldar, Aug 14 2022 *)
-
a(n) = n!*sum(k=1, n, sigma(k, k)/(k*(n-k)!));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-exp(x)*sum(k=1, N, log(1-(k*x)^k)/k)))
A356600
a(n) = n! * Sum_{k=1..n} sigma_2(k)/(k * (n-k)!).
Original entry on oeis.org
1, 7, 38, 240, 1509, 12115, 96326, 929432, 9421089, 108909943, 1249105054, 17862483320, 241674418101, 3676733397363, 59149265744302, 1058605924855568, 18041587282787489, 363409114370324295, 6970858463185187062, 153017341796727034336, 3360005220780469981157
Offset: 1
-
Table[n! * Sum[DivisorSigma[2, k]/(k * (n-k)!), {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Aug 17 2022 *)
-
a(n) = n!*sum(k=1, n, sigma(k, 2)/(k*(n-k)!));
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=1, N, x^k/(k*(1-x^k)^2))))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(-exp(x)*sum(k=1, N, k*log(1-x^k))))
Showing 1-6 of 6 results.
Comments