cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A330354 Expansion of e.g.f. Sum_{k>=1} log(1 + x)^k / (k * (1 - log(1 + x)^k)).

Original entry on oeis.org

1, 2, 1, 21, -122, 1752, -21730, 309166, -4521032, 70344768, -1173530712, 21642745704, -448130571696, 10352684535840, -260101132095888, 6921279885508848, -191813249398678272, 5502934340821289088, -163695952380982280832, 5078687529186002247552
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Sum[Log[1 + x]^k/(k (1 - Log[1 + x]^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[Sum[StirlingS1[n, k] (k - 1)! DivisorSigma[1, k], {k, 1, n}], {n, 1, 20}]

Formula

E.g.f.: -Sum_{k>=1} log(1 - log(1 + x)^k).
E.g.f.: A(x) = log(B(x)), where B(x) = e.g.f. of A306042.
exp(Sum_{n>=1} a(n) * (exp(x) - 1)^n / n!) = g.f. of the partition numbers (A000041).
a(n) = Sum_{k=1..n} Stirling1(n,k) * (k - 1)! * sigma(k), where sigma = A000203.
Conjecture: a(n) ~ n! * (-1)^n * Pi^2 * exp(n) / (24 * (exp(1) - 1)^(n+1)). - Vaclav Kotesovec, Dec 16 2019

A002745 Sum of logarithmic numbers.

Original entry on oeis.org

1, 5, 20, 96, 469, 3145, 20684, 173544, 1557105, 16215253, 159346604, 2230085528, 26985045333, 368730610729, 5628888393652, 97987283458928, 1475486672174337, 29097611462122437, 505383110562327268, 10970329921706735216
Offset: 1

Views

Author

Keywords

References

  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • Jeffrey Shallit, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] * DivisorSigma[1,k] * (k-1)!, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Dec 16 2019 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k)*(k-1)!*binomial(n, k)); \\ Michel Marcus, May 13 2020

Formula

a(n) = Sum_{k=1..n} A000203(k)*(k-1)!*binomial(n, k). - Vladeta Jovovic, Feb 09 2003
E.g.f.: exp(x) * Sum_{k>=1} x^k / (k*(1 - x^k)). - Ilya Gutkovskiy, Dec 11 2019
a(p) == -1 (mod p) for prime p. The pseudoprimes of this congruence are 30, 858, 1722, ... - Amiram Eldar, May 13 2020

Extensions

More terms from Vladeta Jovovic, Feb 09 2003

A260322 Triangle read by rows: T(n,k) = logarithmic polynomial G_k^(n)(x) evaluated at x=1.

Original entry on oeis.org

1, -1, 2, 2, -6, 6, 0, 24, -24, 24, 9, -80, 60, -120, 120, 35, 450, 240, 360, -720, 720, 230, -2142, -2310, -840, 2520, -5040, 5040, 1624, 17696, 9744, 21840, -6720, 20160, -40320, 40320, 13209, -112464, 91224, -184464, 15120, -60480, 181440, -362880, 362880
Offset: 1

Views

Author

N. J. A. Sloane, Jul 23 2015

Keywords

Examples

			Triangle begins:
    1;
   -1,     2;
    2,    -6,     6;
    0,    24,   -24,   24;
    9,   -80,    60, -120,  120;
   35,   450,   240,  360, -720,   720;
  230, -2142, -2310, -840, 2520, -5040, 5040;
  ...
		

Crossrefs

Rows, column sums give A002741, A002742, A002743, A002744.
Main diagonal gives A000142.

Programs

  • Maple
    A260322 := proc(n,r)
        if r = 0 then
            1 ;
        elif n > r+1 then
            0 ;
        else
            add( (-1)^(r-j*n)/(r-j*n)!/j,j=1..(r)/n) ;
            %*r! ;
        end if;
    end proc:
    for r from 1 to 20 do
        for n from 1 to r do
            printf("%a,",A260322(n,r)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Jul 24 2015
  • Mathematica
    T[n_, k_] := Which[n == 0, 1, k > n+1, 0, True,
       Sum[(-1)^(n-j*k)/(n-j*k)!/j, {j, 1, n/k}]] n!;
    Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 30 2023 *)

A346548 E.g.f.: Product_{k>=1} 1 / (1 - x^k)^exp(-x).

Original entry on oeis.org

1, 1, 2, 6, 42, 175, 2015, 10843, 157388, 1240377, 20118077, 172029231, 4052166250, 36360150385, 952965601471, 11194257455977, 316421367496344, 3722989943371217, 134504815853036649, 1641201826969536379, 67298415781492985366, 935342610632498431241, 40176825083871581430723
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 16 2021

Keywords

Comments

Exponential transform of A002743.
The first negative term is a(71) = -1.2234788... * 10^104.

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Product[1/(1 - x^k)^Exp[-x], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Exp[-x] Sum[DivisorSigma[1, k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    A002743[n_] := Sum[(-1)^(n - k) Binomial[n, k] DivisorSigma[1, k] (k - 1)!, {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A002743[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]

Formula

E.g.f.: exp( exp(-x) * Sum_{k>=1} sigma(k) * x^k / k ).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A002743(k) * a(n-k).
Showing 1-4 of 4 results.