cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002754 Related to coefficient of m in Jacobi elliptic function cn(z, m).

Original entry on oeis.org

0, 0, 4, 44, 408, 3688, 33212, 298932, 2690416, 24213776, 217924020, 1961316220, 17651846024, 158866614264, 1429799528428, 12868195755908, 115813761803232, 1042323856229152, 9380914706062436, 84428232354561996, 759854091191058040
Offset: 0

Views

Author

Keywords

References

  • A. Cayley, An Elementary Treatise on Elliptic Functions. Bell, London, 1895, p. 56.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(9^n-8*n-1)/16: n in [0..25]]; // Vincenzo Librandi, Jun 29 2011
  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n (2 n)! Coefficient[ SeriesCoefficient[ JacobiCN[x, m], {x, 0, 2 n}], m, 1]]; (* Michael Somos, Dec 27 2014 *)
    LinearRecurrence[{11, -19, 9}, {0, 0, 4}, 21] (* Jean-François Alcover, Sep 21 2017 *)
  • PARI
    {a(n) = (9^n - 8*n -1) / 16}; /* Michael Somos, Jun 27 2003 */
    

Formula

From Michael Somos, Jun 27 2003: (Start)
G.f.: 4*x^2/((1-x)^2*(1-9*x)).
a(n) = (9^n-8*n-1)/16. (End)
a(n+2) = 4*A014832(n+1). [Bruno Berselli, Jun 29 2011]

Extensions

More terms from Paolo Dominici (pl.dm(AT)libero.it) using formulas 16.22.1 and 16.22.2 of Abramowitz and Stegun's Handbook of Mathematical Functions.