cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060627 1 + Sum_{n >= 1} Sum_{k = 0..n-1} (-1)^n*T(n,k)*y^(2*k)*x^(2*n)/(2*n)! = JacobiCN(x,y).

Original entry on oeis.org

1, 1, 4, 1, 44, 16, 1, 408, 912, 64, 1, 3688, 30768, 15808, 256, 1, 33212, 870640, 1538560, 259328, 1024, 1, 298932, 22945056, 106923008, 65008896, 4180992, 4096, 1, 2690416, 586629984, 6337665152, 9860488448, 2536974336, 67047424, 16384
Offset: 1

Views

Author

Vladeta Jovovic, Apr 13 2001

Keywords

Comments

Essentially same triangle as triangle given by [1, 0, 9, 0, 25, 0, 49, 0, 81, 0, 121, ...] DELTA [0, 4, 0, 16, 0, 36, 0, 64, 0, 100, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jun 13 2004
For the recurrence of the row polynomials b_n(y^2) for cn(x|y^2) = Sum_{n >=0} b_n(y^2)*x^(2*n)/(2*n)! see the Fricke reference, where y=k. - Wolfdieter Lang, Jul 05 2016

Examples

			The first rows of triangle T(n, k), n >= 1, k = 0..n-1, are:
[1], [1, 4], [1, 44, 16], [1, 408, 912, 64], [1, 3688, 30768, 15808, 256], [1, 33212, 870640, 1538560, 259328, 1024], [1, 298932, 22945056, 106923008, 65008896, 4180992, 4096], [1, 2690416, 586629984, 6337665152, 9860488448, 2536974336, 67047424, 16384], ...
		

References

  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 526.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(5.2.20).
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 374.

Crossrefs

Programs

  • Maple
    A060627 := proc(n,m) JacobiCN(z,k) ; coeftayl(%,z=0,2*n) ; (-1)^n*coeftayl(%,k=0,2*m)*(2*n)! ; end proc: # R. J. Mathar, Jan 30 2011
  • Mathematica
    nmax = 8; se = Series[JacobiCN[x, y], {x, 0, 2*nmax} ]; t[n_, m_] := (-1)^n*Coefficient[se, x, 2*n] *(2*n)! // Coefficient[#, y, m]&; Table[t[n, m], {n, 1, nmax}, {m, 0, n-1}] // Flatten (* Jean-François Alcover, Mar 26 2013 *)

Formula

JacobiCN(x, y) = 1 - 1/2*x^2 + (1/24 + 1/6*y^2)*x^4 + ( - 1/720 - 11/180*y^2 - 1/45*y^4)*x^6 + (1/40320 + 17/1680*y^2 + 19/840*y^4 + 1/630*y^6)*x^8 + ( - 1/3628800 - 247/56700*y^6 - 461/453600*y^2 - 641/75600*y^4 - 1/14175*y^8)*x^10 + O(x^12).
From Peter Bala, Aug 23 2011: (Start)
The Taylor expansion of the Jacobian elliptic function cn(x,k) begins
cn(x,k) = 1 - x^2/2! + (1+4*k^2)*x^4/4! - (1+44*k^2+16*k^4)*x^6/6! + ....
The coefficient polynomials in this expansion can be calculated using nested derivatives as follows (see [Dominici, Theorem 4.1 and Example 4.5]):
Let f(x) = sqrt(k^2-sin^2(x)). Define the nested derivative D^n[f](x) by means of the recursion D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0.
Then the coefficient polynomial R(2*n,k) of x^(2*n)/(2*n)! in the expansion of cn(x,k) is given by R(2*n,k) = D^(2*n)[f](0).
See A145271 for the coefficients in the expansion of D^n[f](x) in powers of f(x). See A181613 for the expansion of the reciprocal function 1/cn(x,k).
(End)
G.f. 1/(1 - x/(1 - (2*k)^2*x/(1 - 3^2*x/(1 - (4*k)^2*x/(1 - 5^2*x/(1 - ...)))))) = 1 + x + (1 + 4*k^2)*x^2 + (1 + 44*k^2 + 16*k^4)*x^3 + ... (see Wall, 94.19, p. 374). - Peter Bala, Apr 25 2017

A291527 E.g.f. A(x,k) satisfies: sn(A(x,k), k) = k * sn(x,k), where sn(,) and cn(,) are Jacobi Elliptic functions.

Original entry on oeis.org

1, -1, 0, 1, 1, 4, -10, -4, 9, -1, -44, 75, 224, -299, -180, 225, 1, 408, 92, -7400, 4758, 19592, -15876, -12600, 11025, -1, -3688, -23387, 194160, 155702, -1313312, 264586, 2445840, -1289925, -1323000, 893025, 1, 33212, 804210, -3980044, -20402105, 64915224, 74573980, -279362392, -18229761, 414859500, -144802350, -196465500, 108056025, -1, -298932, -22347185, 33998224, 1349961795, -1942776004, -12484642765, 21458573952, 32679754381, -72263858940, -19224079875, 92046754800, -20560114575, -39332393100, 18261468225, 1, 2690416, 581249144, 2783246128, -71371497796, -59230867280, 1313526021896, -606679979408, -7350770598874, 7512502827344, 15289334428104, -22529210886000, -9997446759300, 25906255174800, -3292683193800, -10226422206000, 4108830350625
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2017

Keywords

Comments

Compare to the law of sines of a spherical triangle: sin(A)/sin(a) = k.
The series reversion of e.g.f. A(x,k) wrt x equals A(k*x, 1/k) / k.

Examples

			This irregular triangle of coefficients T(n,r) in A(x,k) begins:
[1],
[-1, 0, 1],
[1, 4, -10, -4, 9],
[-1, -44, 75, 224, -299, -180, 225],
[1, 408, 92, -7400, 4758, 19592, -15876, -12600, 11025],
[-1, -3688, -23387, 194160, 155702, -1313312, 264586, 2445840, -1289925, -1323000, 893025],
[1, 33212, 804210, -3980044, -20402105, 64915224, 74573980, -279362392, -18229761, 414859500, -144802350, -196465500, 108056025],
[-1, -298932, -22347185, 33998224, 1349961795, -1942776004, -12484642765, 21458573952, 32679754381, -72263858940, -19224079875, 92046754800, -20560114575, -39332393100, 18261468225],
[1, 2690416, 581249144, 2783246128, -71371497796, -59230867280, 1313526021896, -606679979408, -7350770598874, 7512502827344, 15289334428104, -22529210886000, -9997446759300, 25906255174800, -3292683193800, -10226422206000, 4108830350625], ...
where e.g.f. A(x,k) = Sum_{n>=1, r=1..2*n-1} T(n,r) * x^(2*n-1) * k^(2*r-1) / (2*n-1)!.
E.g.f.: A(x,k) = k*x + (k^5 - k)*x^3/3! +
(9*k^9 - 4*k^7 - 10*k^5 + 4*k^3 + k)*x^5/5! +
(225*k^13 - 180*k^11 - 299*k^9 + 224*k^7 + 75*k^5 - 44*k^3 - k)*x^7/7! +
(11025*k^17 - 12600*k^15 - 15876*k^13 + 19592*k^11 + 4758*k^9 - 7400*k^7 + 92*k^5 + 408*k^3 + k)*x^9/9! +
(893025*k^21 - 1323000*k^19 - 1289925*k^17 + 2445840*k^15 + 264586*k^13 - 1313312*k^11 + 155702*k^9 + 194160*k^7 - 23387*k^5 - 3688*k^3 - k)*x^11/11! +
(108056025*k^25 - 196465500*k^23 - 144802350*k^21 + 414859500*k^19 - 18229761*k^17 - 279362392*k^15 + 74573980*k^13 + 64915224*k^11 - 20402105*k^9 - 3980044*k^7 + 804210*k^5 + 33212*k^3 + k)*x^13/13! +
(18261468225*k^29 - 39332393100*k^27 - 20560114575*k^25 + 92046754800*k^23 - 19224079875*k^21 - 72263858940*k^19 + 32679754381*k^17 + 21458573952*k^15 - 12484642765*k^13 - 1942776004*k^11 + 1349961795*k^9 + 33998224*k^7 - 22347185*k^5 - 298932*k^3 - k)*x^15/15! +...
such that
(1) sn(A(x,k), k) = k * sn(x,k),
(2) cn(A(x,k), k) = dn(x,k),
(3) dn(A(k*x,1/k)/k, k) = cn(x,k),
(4) A(k * A(x,k), 1/k) = k * x,
(5) A(A(x,1/k) / k, k) = x / k.
RELATED SERIES.
Let A^r(x,k) denote the r-th iteration of A(x,k) wrt x, then
sn( A^r(x,k), k) = k^r * sn(x,k).
For example, sn( A(A(x,k), k), k) = k^2 * sn(x,k), where
A(A(x,k), k) = k^2*x + (k^8 + k^6 - k^4 - k^2)*x^3/3! + (9*k^14 + 6*k^12 - k^10 - 20*k^8 - 9*k^6 + 14*k^4 + k^2)*x^5/5! + (225*k^20 + 135*k^18 - 180*k^16 - 300*k^14- 434*k^12 + 210*k^10 + 524*k^8 - 44*k^6 - 135*k^4 - k^2)*x^7/7! + (11025*k^26 + 6300*k^24 - 13230*k^22 - 23940*k^20 - 2961*k^18 + 6552*k^16 + 18332*k^14 + 22712*k^12 - 17825*k^10 - 12852*k^8 + 4658*k^6 + 1228*k^4 + k^2)*x^9/9! + (893025*k^32 + 496125*k^30 - 1393875*k^28 - 2433375*k^26 - 335475*k^24 + 3138345*k^22 + 866745*k^20 - 82995*k^18 + 562771*k^16 - 2154361*k^14 - 783465*k^12 + 1194707*k^10 + 201343*k^8 - 158445*k^6 - 11069*k^4 - k^2)*x^11/11! +...
Related Jacobi elliptic functions sn(,), cn(,), and dn(,) begin:
sn(x,k) = x + (-k^2 - 1)*x^3/3! + (k^4 + 14*k^2 + 1)*x^5/5! + (-k^6 - 135*k^4 - 135*k^2 - 1)*x^7/7! + (k^8 + 1228*k^6 + 5478*k^4 + 1228*k^2 + 1)*x^9/9! + (-k^10 - 11069*k^8 - 165826*k^6 - 165826*k^4 - 11069*k^2 - 1)*x^11/11! + (k^12 + 99642*k^10 + 4494351*k^8 + 13180268*k^6 + 4494351*k^4 + 99642*k^2 + 1)*x^13/13! + (-k^14 - 896803*k^12 - 116294673*k^10 - 834687179*k^8 - 834687179*k^6 - 116294673*k^4 - 896803*k^2 - 1)*x^15/15! +...
where sn(x,k) = sn(A(x,k), k)/k.
cn(x,k) = 1 - x^2/2! + (4*k^2 + 1)*x^4/4! + (-16*k^4 - 44*k^2 - 1)*x^6/6! + (64*k^6 + 912*k^4 + 408*k^2 + 1)*x^8/8! + (-256*k^8 - 15808*k^6 - 30768*k^4 - 3688*k^2 - 1)*x^10/10! + (1024*k^10 + 259328*k^8 + 1538560*k^6 + 870640*k^4 + 33212*k^2 + 1)*x^12/12! + (-4096*k^12 - 4180992*k^10 - 65008896*k^8 - 106923008*k^6 - 22945056*k^4 - 298932*k^2 - 1)*x^14/14! +...
where cn(x,k) = dn(A(k*x,1/k)/k, k),
and cn(2*A(x,k), k) = -1 + 2*dn(x,k)^2 / (1 - k^6*sn(x,k)^4).
dn(x,k) = 1 - k^2*x^2/2! + (k^4 + 4*k^2)*x^4/4! + (-k^6 - 44*k^4 - 16*k^2)*x^6/6! + (k^8 + 408*k^6 + 912*k^4 + 64*k^2)*x^8/8! + (-k^10 - 3688*k^8 -30768*k^6 - 15808*k^4 - 256*k^2)*x^10/10! + (k^12 + 33212*k^10 + 870640*k^8 + 1538560*k^6 + 259328*k^4 + 1024*k^2)*x^12/12! + (-k^14 - 298932*k^12 - 22945056*k^10 - 106923008*k^8 - 65008896*k^6 - 4180992*k^4 - 4096*k^2)*x^14/14! +...
where dn(x,k) = cn(A(x,k),k).
		

Crossrefs

Programs

  • PARI
    /* Find A such that sn(A,k) = k * sn(x,k) */
    {T(n,r) = my(A=x,V=[k],S=x,C=1-x^2/2);
    for(m=0,n, V=concat(V,[0,0]); A = x*Ser(V);
    S = intformal(C*subst(C,x,A));
    C = 1 - intformal(S*subst(C,x,A));
    V[#V] = -polcoeff(subst(S,x,A)/S,#V-1,x););
    (2*n-1)!*polcoeff(V[2*n-1],2*r-1,k)}
    for(n=1,10, for(r=1,2*n-1, print1(T(n,r),", "));print(""))
    
  • PARI
    {T(n, k) = my(A, m); if( n<0 || k>=(m=2*n+1), 0, A = intformal(1 / sqrt((1 - x^2) * (1 - y^2*x^2) + x*O(x^m))); A = subst(A, x, y * serreverse(A)); m! * polcoeff( polcoeff(A, m), 2*k+1))}; /* Michael Somos, Aug 27 2017 */

Formula

E.g.f. A(x,k) = Sum_{n>=1, r=1..2*n-1} T(n,r) * x^(2*n-1) * k^(2*r-1)/(2*n-1)!, satisfies:
(1) sn(A(x,k), k) = k * sn(x,k),
(2) cn(A(x,k), k) = dn(x,k),
(3) dn(A(k*x,1/k)/k, k) = cn(x,k),
(4) A(k*A(x,k), 1/k) = k*x,
(5) A(A(x,1/k)/k, k) = x/k,
(6) sn( A^r(x,k), k) = k^r * sn(x,k) where A^r(x,k) = A( A^{r-1}(x,k), k) is the r-th iteration of A(x,k) wrt x, with A^0(x,k) = x.
Row sums of n-th row equals zero for n>1.
T(n+1,1) = (-1)^n for n>=0.
T(n+1, 2*n+1) = ( (2*n)! / (n!*2^n) )^2 = A001818(n) for n>=0.

A172259 Let CK(m) denote the complete elliptic integral of the first kind. a(n) is the n-th smallest integer k such that floor(CK(1/k)) = floor(CK(1/(k-1))) + 1.

Original entry on oeis.org

1, 2, 5, 14, 38, 101, 275, 746, 2026, 5507, 14969, 40689, 110604, 300652, 817255, 2221528, 6038739, 16414993, 44620576, 121291299, 329703934, 896228212, 2436200862, 6622280533, 18001224835, 48932402358, 133012060152, 361564266077, 982833574297, 2671618645410
Offset: 1

Views

Author

Michel Lagneau, Jan 30 2010

Keywords

Comments

F(z,k) = Integral_{t=0..z} 1/(sqrt(1-t^2)*sqrt(1-k^2*t^2)) dt and the complete elliptic integral CK is defined by CK(k) = F(1,sqrt(1-k^2)). We calculate the values of CK(k) with k = 1/p, p = 1,2,3, ... and we propose a very interesting property: a(n+1)/a(n) tends toward e = 2.7182818... when n tends to infinity. For example, a(8) / a(7) = 2.718281581; a(9) / a(8) = 2.7182817562.

Examples

			a(3) = 38 because floor(CK(1/37)) = 4 and floor(CK(1/38)) = 5.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 575, Eq. 16.22.1 and 16.22.2.
  • M. Abramowitz and I. Stegun, "Elliptic Integrals", Chapter 17 of Handbook of Mathematical Functions. Dover Publications Inc., New York, 1046 p., (1965).
  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.

Crossrefs

Programs

  • Maple
    a0:=1:for p from 1 to 1000 do:a:= evalf(EllipticCK(1/p)):if floor(a)=a0+1 then print(p):a0:=floor(a):else fi:od:

Formula

F(z,k) = Integral_{t=0..z} 1/(sqrt(1-t^2)*sqrt(1-k^2*t^2)) dt. CK is defined by CK(k) = F(1,sqrt(1-k^2)). a(n) is the n-th integer k such that floor(CK(1/k)) = floor(CK(1/(k-1))) + 1.
Showing 1-3 of 3 results.