cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A002754 Related to coefficient of m in Jacobi elliptic function cn(z, m).

Original entry on oeis.org

0, 0, 4, 44, 408, 3688, 33212, 298932, 2690416, 24213776, 217924020, 1961316220, 17651846024, 158866614264, 1429799528428, 12868195755908, 115813761803232, 1042323856229152, 9380914706062436, 84428232354561996, 759854091191058040
Offset: 0

Views

Author

Keywords

References

  • A. Cayley, An Elementary Treatise on Elliptic Functions. Bell, London, 1895, p. 56.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(9^n-8*n-1)/16: n in [0..25]]; // Vincenzo Librandi, Jun 29 2011
  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n (2 n)! Coefficient[ SeriesCoefficient[ JacobiCN[x, m], {x, 0, 2 n}], m, 1]]; (* Michael Somos, Dec 27 2014 *)
    LinearRecurrence[{11, -19, 9}, {0, 0, 4}, 21] (* Jean-François Alcover, Sep 21 2017 *)
  • PARI
    {a(n) = (9^n - 8*n -1) / 16}; /* Michael Somos, Jun 27 2003 */
    

Formula

From Michael Somos, Jun 27 2003: (Start)
G.f.: 4*x^2/((1-x)^2*(1-9*x)).
a(n) = (9^n-8*n-1)/16. (End)
a(n+2) = 4*A014832(n+1). [Bruno Berselli, Jun 29 2011]

Extensions

More terms from Paolo Dominici (pl.dm(AT)libero.it) using formulas 16.22.1 and 16.22.2 of Abramowitz and Stegun's Handbook of Mathematical Functions.

A322231 E.g.f.: C(x,k) = 1 + Integral S(x,k)*D(x,k)^2 dx, such that C(x,k)^2 - S(x,k)^2 = 1, and D(x,k)^2 - k^2*S(x,k)^2 = 1, as a triangle of coefficients read by rows.

Original entry on oeis.org

1, 1, 0, 1, 8, 0, 1, 88, 136, 0, 1, 816, 6240, 3968, 0, 1, 7376, 195216, 513536, 176896, 0, 1, 66424, 5352544, 39572864, 51880064, 11184128, 0, 1, 597864, 139127640, 2458228480, 8258202240, 6453433344, 951878656, 0, 1, 5380832, 3535586112, 137220256000, 994697838080, 1889844670464, 978593947648, 104932671488, 0, 1, 48427552, 88992306208, 7233820923904, 102950036177920, 398800479698944, 485265505927168, 178568645312512, 14544442556416, 0
Offset: 0

Views

Author

Paul D. Hanna, Dec 14 2018

Keywords

Comments

Equals a row reversal of triangle A325222.
Compare to cn(x,k) = 1 - Integral sn(x,k)*dn(x,k) dx, where sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions (see triangle A060627).
Compare also to Michael Pawellek's generalized elliptic functions.

Examples

			E.g.f.: C(x,k) = 1 + x^2/2! + (8*k^2 + 1)*x^4/4! + (136*k^4 + 88*k^2 + 1)*x^6/6! + (3968*k^6 + 6240*k^4 + 816*k^2 + 1)*x^8/8! + (176896*k^8 + 513536*k^6 + 195216*k^4 + 7376*k^2 + 1)*x^10/10! + (11184128*k^10 + 51880064*k^8 + 39572864*k^6 + 5352544*k^4 + 66424*k^2 + 1)*x^12/12! + (951878656*k^12 + 6453433344*k^10 + 8258202240*k^8 + 2458228480*k^6 + 139127640*k^4 + 597864*k^2 + 1)*x^14/14! + ...
such that C(x,k)^2 - S(x,k)^2 = 1.
This triangle of coefficients T(n,j) of x^(2*n)*k^(2*j)/(2*n)! in e.g.f. C(x,k) begins:
1;
1, 0;
1, 8, 0;
1, 88, 136, 0;
1, 816, 6240, 3968, 0;
1, 7376, 195216, 513536, 176896, 0;
1, 66424, 5352544, 39572864, 51880064, 11184128, 0;
1, 597864, 139127640, 2458228480, 8258202240, 6453433344, 951878656, 0;
1, 5380832, 3535586112, 137220256000, 994697838080, 1889844670464, 978593947648, 104932671488, 0;
1, 48427552, 88992306208, 7233820923904, 102950036177920, 398800479698944, 485265505927168, 178568645312512, 14544442556416, 0; ...
RELATED SERIES.
The related series S(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
S(x,k) = x + (2*k^2 + 1)*x^3/3! + (16*k^4 + 28*k^2 + 1)*x^5/5! + (272*k^6 + 1032*k^4 + 270*k^2 + 1)*x^7/7! + (7936*k^8 + 52736*k^6 + 36096*k^4 + 2456*k^2 + 1)*x^9/9! + (353792*k^10 + 3646208*k^8 + 4766048*k^6 + 1035088*k^4 + 22138*k^2 + 1)*x^11/11! + (22368256*k^12 + 330545664*k^10 + 704357760*k^8 + 319830400*k^6 + 27426960*k^4 + 199284*k^2 + 1)*x^13/13! + ...
The related series D(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
D(x,k) = 1 + k^2*x^2/2! + (5*k^4 + 4*k^2)*x^4/4! + (61*k^6 + 148*k^4 + 16*k^2)*x^6/6! + (1385*k^8 + 6744*k^6 + 2832*k^4 + 64*k^2)*x^8/8! + (50521*k^10 + 410456*k^8 + 383856*k^6 + 47936*k^4 + 256*k^2)*x^10/10! + (2702765*k^12 + 32947964*k^10 + 54480944*k^8 + 17142784*k^6 + 780544*k^4 + 1024*k^2)*x^12/12! + (199360981*k^14 + 3402510924*k^12 + 8760740640*k^10 + 5199585280*k^8 + 686711040*k^6 + 12555264*k^4 + 4096*k^2)*x^14/14! + ...
		

Crossrefs

Cf. A322230 (S), A322232 (D), A001818 (row sums), A002105.
Cf. A325222 (row reversal).

Programs

  • PARI
    N=10;
    {S=x;C=1;D=1; for(i=1,2*N, S = intformal(C*D^2 +O(x^(2*N+1))); C = 1 + intformal(S*D^2); D = 1 + k^2*intformal(S*C*D));}
    for(n=0,N, for(j=0,n, print1( (2*n)!*polcoeff(polcoeff(C,2*n,x),2*j,k),", ")) ;print(""))

Formula

E.g.f. C = C(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n) * k^(2*j) / (2*n)!, along with related series S = S(x,k) and D = D(x,k), satisfies:
(1a) S = Integral C*D^2 dx.
(1b) C = 1 + Integral S*D^2 dx.
(1c) D = 1 + k^2 * Integral S*C*D dx.
(2a) C^2 - S^2 = 1.
(2b) D^2 - k^2*S^2 = 1.
(3a) C + S = exp( Integral D^2 dx ).
(3b) D + k*S = exp( k * Integral C*D dx ).
(4a) S = sinh( Integral D^2 dx ).
(4b) S = sinh( k * Integral C*D dx ) / k.
(4c) C = cosh( Integral D^2 dx ).
(4d) D = cosh( k * Integral C*D dx ).
(5a) d/dx S = C*D^2.
(5b) d/dx C = S*D^2.
(5c) d/dx D = k^2 * S*C*D.
From Paul D. Hanna, Mar 31 2019, Apr 20 2019 (Start):
Given sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions, with i^2 = -1, k' = sqrt(1-k^2), then
(6a) S = -i * sn( i * Integral D dx, k),
(6b) C = cn( i * Integral D dx, k),
(6c) D = dn( i * Integral D dx, k).
(7a) S = sc( Integral D dx, k') = sn(Integral D dx, k')/cn(Integral D dx, k'),
(7b) C = nc( Integral D dx, k') = 1/cn(Integral D dx, k'),
(7c) D = dc( Integral D dx, k') = dn(Integral D dx, k')/cn(Integral D dx, k'). (End)
Row sums equal ( (2*n)!/(n!*2^n) )^2 = A001818(n), the squares of the odd double factorials.
Diagonal T(n+1,n) = 2^n*A002105(n+1), for n>=0, where A002105 gives the reduced tangent numbers.

A370543 Expansion of the Jacobi elliptic function cn(x,k) at k = 2 (even powers only).

Original entry on oeis.org

1, -1, 17, -433, 20321, -1584289, 179967473, -28151779537, 5812048858049, -1529741412486721, 499975227342256337, -198676311845589783793, 94327947921149101192481, -52736138158762405338195169, 34291374178966525773142501553, -25660133983889999165774819970577
Offset: 0

Views

Author

Paul D. Hanna, Mar 25 2024

Keywords

Examples

			E.g.f.: C(x) = 1 - x^2/2! + 17*x^4/4! - 433*x^6/6! + 20321*x^8/8! - 1584289*x^10/10! + 179967473*x^12/12! - 28151779537*x^14/14! + ...
where C(x) = cn(x,2).
		

References

  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 374.

Crossrefs

Cf. A028296 (cn(x,1)), A060627 (cn(x,k)).
Cf. A370542 (sn(x,2)), A370544 (dn(x,2)), A249282.

Programs

  • Maple
    # a(n) = (2*n)! * [x^(2*n)] cn(x, 2).
    cn_list := proc(k, len) local n; seq((2*n)!*coeff(series(JacobiCN(z, k), z,
    2*len + 2), z, 2*n), n = 0..len) end:
    cn_list(2, 15);  # Peter Luschny, Mar 25 2024
  • Mathematica
    nmax = 20;
    DeleteCases[CoefficientList[JacobiCN[x, 4] + O[x]^(2*nmax+2), x], 0]* (2*Range[0, nmax])! (* Jean-François Alcover, Mar 28 2024 *)
  • PARI
    /* C(x) = Jacobi Elliptic Function cn(x,k) at k = 2: */
    {a(n) = my(k=2,C=1,S=x,D=1); for(i=1,n,
    S = intformal(C*D + x*O(x^(2*n+1)));
    C = 1 - intformal(S*D);
    D = 1 - k^2*intformal(S*C)); (2*n)!*polcoeff(C,2*n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = (-1)^n * Sum_{k=0..n-1} A060627(n,k)*4^k for n >= 1, with a(0) = 1.
E.g.f. C(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! satisfies the following formulas, where sn, cn, and dn are Jacobi elliptic functions.
(1) C(x) = cn(x,k) at k = 2.
(2.a) C(x) = dn(2*x, 1/2).
(2.b) C(x) = (4 - 2*sn(x,1/2)^2 + sn(x,1/2)^4) / (4 - sn(x,1/2)^4).
(3) C(x) = 1 - Integral sqrt(1 - C(x)^2) * sqrt(4*C(x)^2 - 3) dx.
(4) C(x) = cos( Integral sqrt(4*C(x)^2 - 3) dx ).
(5.a) C(x) = sqrt(1 - sn(x,2)^2).
(5.b) C(x) = sqrt(3 + dn(x,2)^2) / 2.
O.g.f.: 1/(1 + x/(1 + 4*2^2*x/(1 + 3^2*x/(1 + 4*4^2*x/(1 + 5^2*x/(1 + 4*6^2*x/(1 + 7^2*x/(1 + ...)))))))) = 1 - x + 17*x^2 - 433*x^3 + 20321*x^4 - 1584289*x^5 + ... (continued fraction, see Wall, 94.18, p. 374). - [See formula in A060627 by Peter Bala, Apr 25 2017].
a(n) ~ (-1)^n * 2^(4*n+2) * agm(1,2)^(2*n+1) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)), where agm(1,2) = A068521 is the arithmetic-geometric mean. - Vaclav Kotesovec, Mar 28 2024

A181612 Triangle T(n,m) of the coefficients JacobiDC(x,y) = sum_{n>=0} sum_{m=0..n} (-1)^m* T(n,m) *x^(2*n) *y^(2*m)/(2*n)!.

Original entry on oeis.org

1, 1, 1, 5, 6, 1, 61, 107, 47, 1, 1385, 3116, 2142, 412, 1, 50521, 138933, 130250, 45530, 3693, 1, 2702765, 8783986, 10430983, 5353260, 1036715, 33218, 1, 199360981, 747603679, 1074680289, 728130163, 226132303
Offset: 0

Views

Author

R. J. Mathar, Jan 30 2011

Keywords

Examples

			The triangle starts in row n=0 as
1;
1, 1;
5, 6, 1;
61, 107, 47, 1;
1385, 3116, 2142, 412, 1;
50521, 138933, 130250, 45530, 3693, 1;
		

References

  • M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover. Section 16.22.

Crossrefs

Cf. A060627, A060628, A181613, A000364 (apparently the column m=0).

Programs

  • Maple
    A181612 := proc(n,m) JacobiDC(z,k) ; coeftayl(%,z=0,2*n) ; (-1)^m*coeftayl(%,k=0,2*m)*(2*n)! ; end proc:
    seq( seq(A181612(n,m),m=0..n),n=0..10) ;
  • Mathematica
    nmax = 8; se = Series[JacobiDC[x, y], {x, 0, 2*nmax}]; t[n_, m_] := Coefficient[se, x, 2*n]*(2*n)! // Coefficient[#, y, m]& // Abs; Table[t[n, m], {n, 0, nmax}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)

Formula

From Peter Bala, Aug 23 2011: (Start)
The elliptic function dc(x,k) (JacobiDC(x,k) in Maple notation) is defined as dn(x,k)/cn(x,k) where dn(x,k) and cn(x,k) are the Jacobian elliptic functions of modulus k. The Taylor expansions begin
dn(x,k) = 1-k^2*x^2/2!+k^2*(4+k^2)*x^4/4!-k^2*(16+44*k^2+k^4)*x^6/6!+...
cn(x,k) = 1-x^2/2!+(1+4*k^2)*x^4/4!-(1+44*k^2+16*k^4)*x^6/6!+... and hence
dc(x,k) = 1+(1-k^2)*x^2/2!+(5-6*k^2+k^4)*x^4/4!+(61-107*k^2+47*k^4-k^6)*x^6/6!+....
The coefficients for cn(x,k) are in A060627. The coefficients of dn(x,k) may be obtained by row reversal of A060627.
The expansion for dc(x,k) can also be obtained directly from that of dn(x,k) since by Jacobi's imaginary transformations we have dc(x,k) = dn(i*x,k'), where the complementary modulus k' is given by k' = sqrt(1-k^2).
By Jacobi's real transformation the reciprocal of dc(x,k) is given by 1/dc(x,k) = dc(x*k,1/k).
The row polynomials of this table can be calculated using nested derivatives as follows (see [Dominici, Theorem 4.1 and Example 4.5]):
Let f(x) = sqrt(1-(1-k^2)*sin^2(x)). Define the nested derivative D^n[f](x) by means of the recursion D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0.
See A145271 for the coefficients in the expansion of D^n[f](x) in powers of f(x).
Then the coefficient of x^(2*n)/(2*n)! in the expansion of dc(x,k) is given by (-1)^n*D^(2*n)[f](0).
(End)

A181613 Triangle T(n,m) of the coefficients JacobiNC(x,y) = sum_{n>0} sum_{m=0..n-1} (-1)^m* T(n,m) *x^(2*n) *y^(2*m)/(2*n)!.

Original entry on oeis.org

1, 5, 4, 61, 76, 16, 1385, 2424, 1104, 64, 50521, 113672, 79728, 16832, 256, 2702765, 7432604, 7052528, 2586112, 264448, 1024, 199360981, 647923188, 775638816, 408850432, 85975296, 4205568, 4096, 19391512145, 72718170544, 105138354912, 72490884224, 23551644928, 2939602944, 67162112, 16384
Offset: 1

Views

Author

R. J. Mathar, Jan 30 2011

Keywords

Comments

The column m=0 is apparently A000364.

Examples

			The triangle starts in row n=1 as:
1;
5, 4;
61, 76, 16;
1385, 2424, 1104, 64;
50521, 113672, 79728, 16832, 256;
		

References

  • M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover. Section 16.22.
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 374.

Crossrefs

Programs

  • Maple
    A181613 := proc(n,m) JacobiNC(z,k) ; coeftayl(%,z=0,2*n) ; (-1)^m*coeftayl(%,k=0,2*m)*(2*n)! ; end proc:
    seq( seq(A181613(n,m),m=0..n-1),n=1..10) ;
  • Mathematica
    nmax = 8; se = Series[JacobiNC[x, y], {x, 0, 2*nmax}]; t[n_, m_] := Coefficient[se, x, 2*n]*(2*n)! // Coefficient[#, y, m]& // Abs; Table[t[n, m], {n, 1, nmax}, {m, 0, n-1}] // Flatten (* Jean-François Alcover, Jan 10 2014 *)

Formula

From Peter Bala, Aug 23 2011: (Start)
The Taylor expansion of the Jacobian elliptic function cn(u,k) begins
cn(u,k) = 1-u^2/2!+(1+4*k^2)*u^4/4!-(1+44*k^2+16*k^4)*u^6/6!+... - see A060627.
The Taylor expansion of the reciprocal function 1/cn(u,k) can be obtained directly from this by using Jacobi's imaginary transformation
1/cn(u,k) = cn(i*u,sqrt(1-k^2)) [Abramowitz and Stegun, 16.20] to yield
1/cn(u,k) = 1+u^2/2!+(5-4*k^2)*u^4/4!+(61-76*k^2+16*k^4)*u^6/6!+....
The coefficient polynomials R(2*n,k) of this expansion can be calculated as follows (apply [Dominici, Theorem 4.1]):
Let f(x) = sqrt(k^2-cos^2(x)). Define the nested derivative D^n[f](x) by means of the recursion D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0. Then R(2*n,k) = D^(2*n)[f](0).
See A145271 for the coefficients in the expansion of D^n[f](x) in powers of f(x).
(End)
G.f. 1/(1 - x/(1 - 2^2*(1 - k^2)*x/(1 - 3^2*x/(1 - 4^2*(1 - k^2)*x/(1 - 5^2*x/(1 - ...)))))) = 1 + x + (5 - 4*k^2)*x^2 + (61 - 76*k^2 + 16*k^4)*x^3 + ... (see Wall, 94.19, p. 374).

A325221 E.g.f.: C(x,k) = cn( i * Integral C(x,k) dx, k), where C(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n)*k^(2*j)/(2*n)!, as a triangle of coefficients T(n,j) read by rows.

Original entry on oeis.org

1, 1, 0, 5, 4, 0, 61, 148, 16, 0, 1385, 6744, 2832, 64, 0, 50521, 410456, 383856, 47936, 256, 0, 2702765, 32947964, 54480944, 17142784, 780544, 1024, 0, 199360981, 3402510924, 8760740640, 5199585280, 686711040, 12555264, 4096, 0, 19391512145, 441239943664, 1632067372896, 1569971730560, 419867864320, 26090711040, 201199616, 16384, 0, 2404879675441, 70347660061552, 353538702361888, 502094919789184, 227204970315520, 30892394850304, 965223559168, 3220652032, 65536, 0
Offset: 0

Views

Author

Paul D. Hanna, Apr 13 2019

Keywords

Comments

Equals a row reversal of triangle A322232.
Compare to cn(x,k) = 1 - Integral sn(x,k)*dn(x,k) dx, where sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions (see triangle A060627).

Examples

			E.g.f.: C(x,k) = 1 + x^2/2! + (5 + 4*k^2)*x^4/4! + (61 + 148*k^2 + 16*k^4)*x^6/6! + (1385 + 6744*k^2 + 2832*k^4 + 64*k^6)*x^8/8! + (50521 + 410456*k^2 + 383856*k^4 + 47936*k^6 + 256*k^8)*x^10/10! + (2702765 + 32947964*k^2 + 54480944*k^4 + 17142784*k^6 + 780544*k^8 + 1024*k^10)*x^12/12! + (199360981 + 3402510924*k^2 + 8760740640*k^4 + 5199585280*k^6 + 686711040*k^8 + 12555264*k^10 + 4096*k^12)*x^14/14! + ...
such that C(x,k) = cn( i * Integral C(x,k) dx, k).
This triangle of coefficients T(n,j) of x^(2*n)*k^(2*j)/(2*n)! in e.g.f. C(x,k) begins:
1;
1, 0;
5, 4, 0;
61, 148, 16, 0;
1385, 6744, 2832, 64, 0;
50521, 410456, 383856, 47936, 256, 0;
2702765, 32947964, 54480944, 17142784, 780544, 1024, 0;
199360981, 3402510924, 8760740640, 5199585280, 686711040, 12555264, 4096, 0;
19391512145, 441239943664, 1632067372896, 1569971730560, 419867864320, 26090711040, 201199616, 16384, 0;
2404879675441, 70347660061552, 353538702361888, 502094919789184, 227204970315520, 30892394850304, 965223559168, 3220652032, 65536, 0; ...
RELATED SERIES.
The related series S(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
S(x,k) = x + (2 + 1*k^2)*x^3/3! + (16 + 28*k^2 + 1*k^4)*x^5/5! + (272 + 1032*k^2 + 270*k^4 + 1*k^6)*x^7/7! + (7936 + 52736*k^2 + 36096*k^4 + 2456*k^6 + 1*k^8)*x^9/9! + (353792 + 3646208*k^2 + 4766048*k^4 + 1035088*k^6 + 22138*k^8 + 1*k^10)*x^11/11! + (22368256 + 330545664*k^2 + 704357760*k^4 + 319830400*k^6 + 27426960*k^8 + 199284*k^10 + 1*k^12)*x^13/13! + (1903757312 + 38188155904*k^2 + 120536980224*k^4 + 93989648000*k^6 + 18598875760*k^8 + 702812568*k^10 + 1793606*k^12 + 1*k^14)*x^15/15! + ...
The related series D(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
D(x,k) = 1 + k^2*x^2/2! + (8*k^2 + 1*k^4)*x^4/4! + (136*k^2 + 88*k^4 + 1*k^6)*x^6/6! + (3968*k^2 + 6240*k^4 + 816*k^6 + 1*k^8)*x^8/8! + (176896*k^2 + 513536*k^4 + 195216*k^6 + 7376*k^8 + 1*k^10)*x^10/10! + (11184128*k^2 + 51880064*k^4 + 39572864*k^6 + 5352544*k^8 + 66424*k^10 + 1*k^12)*x^12/12! + (951878656*k^2 + 6453433344*k^4 + 8258202240*k^6 + 2458228480*k^8 + 139127640*k^10 + 597864*k^12 + 1*k^14)*x^14/14! + ...
		

Crossrefs

Cf. A325220 (S), A325222(D).
Cf. A322232 (row reversal).

Programs

  • PARI
    N=10;
    {S=x; C=1; D=1; for(i=1, 2*N, S = intformal(C^2*D +O(x^(2*N+1))); C = 1 + intformal(S*C*D); D = 1 + k^2*intformal(S*C^2)); }
    {T(n,j) = (2*n)!*polcoeff(polcoeff(C, 2*n, x), 2*j, k)}
    for(n=0, N, for(j=0, n, print1( T(n,j), ", ")) ; print(""))

Formula

E.g.f. C = C(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n)*k^(2*j)/(2*n)!, along with related series S = S(x,k) and D = D(x,k), satisfies:
(1a) S = Integral C^2*D dx.
(1b) C = 1 + Integral S*C*D dx.
(1c) D = 1 + k^2 * Integral S*C^2 dx.
(2a) C^2 - S^2 = 1.
(2b) D^2 - k^2*S^2 = 1.
(3a) C + S = exp( Integral C*D dx ).
(3b) D + k*S = exp( k * Integral C^2 dx ).
(4a) S = sinh( Integral C*D dx ).
(4b) S = sinh( k * Integral C^2 dx ) / k.
(4c) C = cosh( Integral C*D dx ).
(4d) D = cosh( k * Integral C^2 dx ).
(5a) d/dx S = C^2*D.
(5b) d/dx C = S*C*D.
(5c) d/dx D = k^2 * S*C^2.
Given sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions, with i^2 = -1, k' = sqrt(1-k^2), then
(6a) S = -i * sn( i * Integral C dx, k),
(6b) C = cn( i * Integral C dx, k),
(6c) D = dn( i * Integral C dx, k).
(7a) S = sc( Integral C dx, k') = sn(Integral C dx, k')/cn(Integral C dx, k'),
(7b) C = nc( Integral C dx, k') = 1/cn(Integral C dx, k'),
(7c) D = dc( Integral C dx, k') = dn(Integral C dx, k')/cn(Integral C dx, k').
Row sums equal ( (2*n)!/(n!*2^n) )^2 = A001818(n), the squares of the odd double factorials.
Column T(n,0) = A000364(n), for n>=0, where A000364 is the secant numbers.

A370544 Expansion of the Jacobi elliptic function dn(x,k) at k = 2 (even powers only).

Original entry on oeis.org

1, -4, 32, -832, 41216, -3168256, 359518208, -56319950848, 11624409595904, -3059387770077184, 999955757611876352, -397353151288859164672, 188655750511199441125376, -105472284295853235792510976, 68582751548430569936978444288, -51320267059211655419226235076608
Offset: 0

Views

Author

Paul D. Hanna, Mar 25 2024

Keywords

Examples

			E.g.f.: D(x) = 1 - 4*x^2/2! + 32*x^4/4! - 832*x^6/6! + 41216*x^8/8! - 3168256*x^10/10! + 359518208*x^12/12! - 56319950848*x^14/14! + ...
where D(x) = dn(x,2).
		

References

  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 374.

Crossrefs

Cf. A028296 (dn(x,1)), A060627 (cn(x,k)).
Cf. A370542 (sn(x,2)), A370543 (cn(x,2)), A249282.

Programs

  • Maple
    # a(n) = (2*n)! * [x^(2*n)] dn(x, 2).
    dn_list := proc(k, len) local n; seq((2*n)!*coeff(series(JacobiDN(z, k), z,
    2*len + 2), z, 2*n), n = 0..len) end:
    dn_list(2, 15);  # Peter Luschny, Mar 25 2024
  • Mathematica
    nmax = 20;
    DeleteCases[CoefficientList[JacobiDN[x, 4] + O[x]^(2*nmax+2), x], 0]* (2*Range[0, nmax])! (* Jean-François Alcover, Mar 28 2024 *)
  • PARI
    /* D(x) = Jacobi Elliptic Function dn(x,k) at k = 2: */
    {a(n) = my(k=2, C=1,S=x,D=1); for(i=1,n,
    S = intformal(C*D + x*O(x^(2*n+1)));
    C = 1 - intformal(S*D);
    D = 1 - k^2*intformal(S*C)); (2*n)!*polcoeff(D,2*n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = (-1)^n * Sum_{k=0..n-1} A060627(n,k)*4^(n-k) for n >= 1, with a(0) = 1.
E.g.f. D(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! satisfies the following formulas, where sn, cn, and dn are Jacobi elliptic functions.
(1) D(x) = dn(x,k) at k = 2.
(2.a) D(x) = cn(2*x, 1/2).
(2.b) D(x) = (4 - 8*sn(x,1/2)^2 + sn(x,1/2)^4) / (4 - sn(x,1/2)^4).
(3) D(x) = 1 - Integral sqrt(1 - D(x)^2) * sqrt(3 + D(x)^2) dx.
(4) D(x) = cos( Integral sqrt(3 + D(x)^2) dx ).
(5.a) D(x) = sqrt(1 - 4*sn(x,2)^2).
(5.b) D(x) = sqrt(4*cn(x,2)^2 - 3).
O.g.f. 1/(1 + 4*x/(1 + 2^2*x/(1 + 4*3^2*x/(1 + 4^2*x/(1 + 4*5^2*x/(1 + 6^2*x/(1 + 4*7^2*x/(1 + ...)))))))) = 1 - 4*x + 32*x^2 - 832*x^3 + 41216*x^4 - 3168256*x^5 + ... (continued fraction, see Wall, 94.19, p. 374).
a(n) ~ (-1)^n * 2^(4*n+3) * agm(1,2)^(2*n+1) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)), where agm(1,2) = A068521 is the arithmetic-geometric mean. - Vaclav Kotesovec, Mar 28 2024

A190904 a(n) = Sum_{k=0..n-1} cos(Pi*k/2)*binomial(n-1,k)*a(n-1-k)*a(k) for n > 0, a(0) = 1.

Original entry on oeis.org

1, 1, 1, 0, -3, -12, -27, 0, 441, 3024, 11529, 0, -442827, -4390848, -23444883, 0, 1636819569, 21224560896, 145703137041, 0, -16106380394643, -257991277243392, -2164638920874507, 0, 347592265948756521
Offset: 0

Views

Author

Peter Luschny, Jul 26 2011

Keywords

Crossrefs

Programs

  • Maple
    A190904 := proc(n) option remember; `if`(n=0,1,add(((1-irem(k,2))*(-1)^ iquo(k,2))*binomial(n-1,k)*A190904(n-1-k)*A190904(k),k=0..n-1)) end:
  • Mathematica
    a[0] = 1;
    a[n_] := a[n] =
      Sum[Mod[(k+1)^3, 4, -1] Binomial[n-1, k] a[n-k-1] a[k], {k, 0, n-1}];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jun 24 2019 *)

Formula

Let F(n,x) = Sum_{k=0..n-1} cos(Pi*k*x)*binomial(n-1,k)*F(n-1-k,x)* F(k,x), then
F(n, 0) = n! = A000142(n),
F(n, 1/2) = a(n),
F(n, 1) = 2^n*Euler_{n}(1) = A_{n}(-1) = A155585(n).
a(2*n) = A159601(n)*(-1)^floor((n-1)/2).
a(2*n+1) = A104203(2*n+1).
From Peter Bala, Aug 25 2011: (Start)
The sequence entries may be calculated as follows: Define the nested derivative D^n[f](x) by means of the recursion D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0. The coefficients in the expansion of D^n[f](x) in powers of f(x) can be found in A145271. Then we have
a(2*n) = D^(2*n)[sqrt(1+sin^2(x))](0)
a(2*n+1) = D^(2*n)[sqrt(1-x^4)](0).
The generating function involves the Jacobian elliptic functions. Define E(u,k) := cn(i*u,k)-i*sn(i*u,k) = 1+u+u^2/2!+(1+k^2)*u^3/3!+(1+4*k^2)*u^4/4!+..., where cn(u,k) and sn(u,k) are Jacobian elliptic functions of modulus k (see A060627 and A060628). Then the e.g.f. A(u) for this sequence is
A(u) := E(u,i) = 1+u+u^2/2!-3*u^4/4!-12*u^5/5!-27*u^6/6!+....
Proof: Using well-known properties of the Jacobian elliptic functions (see for example Abramowitz and Stegun, Chapter 16) we find the generating function A(u) satisfies the differential equation
(d/du)A(u) = dn(i*u,i)*A(u) = 1/2*(A(i*u)+A(-i*u))*A(u), which leads to a recurrence for the coefficients of A(u):
a(n+1) = sum{k=0..floor(n/2)} (-1)^k*binomial(n,2*k)*a(2*k)*a(n-2*k) with a(0) = 1. This recurrence is equivalent to the defining recurrence for this sequence given above.
End proof.
The generating function A(u) satisfies 1/A(u) = A(-u).
Compare entries of this sequence with those of A104203, A159600, A193541 and A193544.
(End)

A291527 E.g.f. A(x,k) satisfies: sn(A(x,k), k) = k * sn(x,k), where sn(,) and cn(,) are Jacobi Elliptic functions.

Original entry on oeis.org

1, -1, 0, 1, 1, 4, -10, -4, 9, -1, -44, 75, 224, -299, -180, 225, 1, 408, 92, -7400, 4758, 19592, -15876, -12600, 11025, -1, -3688, -23387, 194160, 155702, -1313312, 264586, 2445840, -1289925, -1323000, 893025, 1, 33212, 804210, -3980044, -20402105, 64915224, 74573980, -279362392, -18229761, 414859500, -144802350, -196465500, 108056025, -1, -298932, -22347185, 33998224, 1349961795, -1942776004, -12484642765, 21458573952, 32679754381, -72263858940, -19224079875, 92046754800, -20560114575, -39332393100, 18261468225, 1, 2690416, 581249144, 2783246128, -71371497796, -59230867280, 1313526021896, -606679979408, -7350770598874, 7512502827344, 15289334428104, -22529210886000, -9997446759300, 25906255174800, -3292683193800, -10226422206000, 4108830350625
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2017

Keywords

Comments

Compare to the law of sines of a spherical triangle: sin(A)/sin(a) = k.
The series reversion of e.g.f. A(x,k) wrt x equals A(k*x, 1/k) / k.

Examples

			This irregular triangle of coefficients T(n,r) in A(x,k) begins:
[1],
[-1, 0, 1],
[1, 4, -10, -4, 9],
[-1, -44, 75, 224, -299, -180, 225],
[1, 408, 92, -7400, 4758, 19592, -15876, -12600, 11025],
[-1, -3688, -23387, 194160, 155702, -1313312, 264586, 2445840, -1289925, -1323000, 893025],
[1, 33212, 804210, -3980044, -20402105, 64915224, 74573980, -279362392, -18229761, 414859500, -144802350, -196465500, 108056025],
[-1, -298932, -22347185, 33998224, 1349961795, -1942776004, -12484642765, 21458573952, 32679754381, -72263858940, -19224079875, 92046754800, -20560114575, -39332393100, 18261468225],
[1, 2690416, 581249144, 2783246128, -71371497796, -59230867280, 1313526021896, -606679979408, -7350770598874, 7512502827344, 15289334428104, -22529210886000, -9997446759300, 25906255174800, -3292683193800, -10226422206000, 4108830350625], ...
where e.g.f. A(x,k) = Sum_{n>=1, r=1..2*n-1} T(n,r) * x^(2*n-1) * k^(2*r-1) / (2*n-1)!.
E.g.f.: A(x,k) = k*x + (k^5 - k)*x^3/3! +
(9*k^9 - 4*k^7 - 10*k^5 + 4*k^3 + k)*x^5/5! +
(225*k^13 - 180*k^11 - 299*k^9 + 224*k^7 + 75*k^5 - 44*k^3 - k)*x^7/7! +
(11025*k^17 - 12600*k^15 - 15876*k^13 + 19592*k^11 + 4758*k^9 - 7400*k^7 + 92*k^5 + 408*k^3 + k)*x^9/9! +
(893025*k^21 - 1323000*k^19 - 1289925*k^17 + 2445840*k^15 + 264586*k^13 - 1313312*k^11 + 155702*k^9 + 194160*k^7 - 23387*k^5 - 3688*k^3 - k)*x^11/11! +
(108056025*k^25 - 196465500*k^23 - 144802350*k^21 + 414859500*k^19 - 18229761*k^17 - 279362392*k^15 + 74573980*k^13 + 64915224*k^11 - 20402105*k^9 - 3980044*k^7 + 804210*k^5 + 33212*k^3 + k)*x^13/13! +
(18261468225*k^29 - 39332393100*k^27 - 20560114575*k^25 + 92046754800*k^23 - 19224079875*k^21 - 72263858940*k^19 + 32679754381*k^17 + 21458573952*k^15 - 12484642765*k^13 - 1942776004*k^11 + 1349961795*k^9 + 33998224*k^7 - 22347185*k^5 - 298932*k^3 - k)*x^15/15! +...
such that
(1) sn(A(x,k), k) = k * sn(x,k),
(2) cn(A(x,k), k) = dn(x,k),
(3) dn(A(k*x,1/k)/k, k) = cn(x,k),
(4) A(k * A(x,k), 1/k) = k * x,
(5) A(A(x,1/k) / k, k) = x / k.
RELATED SERIES.
Let A^r(x,k) denote the r-th iteration of A(x,k) wrt x, then
sn( A^r(x,k), k) = k^r * sn(x,k).
For example, sn( A(A(x,k), k), k) = k^2 * sn(x,k), where
A(A(x,k), k) = k^2*x + (k^8 + k^6 - k^4 - k^2)*x^3/3! + (9*k^14 + 6*k^12 - k^10 - 20*k^8 - 9*k^6 + 14*k^4 + k^2)*x^5/5! + (225*k^20 + 135*k^18 - 180*k^16 - 300*k^14- 434*k^12 + 210*k^10 + 524*k^8 - 44*k^6 - 135*k^4 - k^2)*x^7/7! + (11025*k^26 + 6300*k^24 - 13230*k^22 - 23940*k^20 - 2961*k^18 + 6552*k^16 + 18332*k^14 + 22712*k^12 - 17825*k^10 - 12852*k^8 + 4658*k^6 + 1228*k^4 + k^2)*x^9/9! + (893025*k^32 + 496125*k^30 - 1393875*k^28 - 2433375*k^26 - 335475*k^24 + 3138345*k^22 + 866745*k^20 - 82995*k^18 + 562771*k^16 - 2154361*k^14 - 783465*k^12 + 1194707*k^10 + 201343*k^8 - 158445*k^6 - 11069*k^4 - k^2)*x^11/11! +...
Related Jacobi elliptic functions sn(,), cn(,), and dn(,) begin:
sn(x,k) = x + (-k^2 - 1)*x^3/3! + (k^4 + 14*k^2 + 1)*x^5/5! + (-k^6 - 135*k^4 - 135*k^2 - 1)*x^7/7! + (k^8 + 1228*k^6 + 5478*k^4 + 1228*k^2 + 1)*x^9/9! + (-k^10 - 11069*k^8 - 165826*k^6 - 165826*k^4 - 11069*k^2 - 1)*x^11/11! + (k^12 + 99642*k^10 + 4494351*k^8 + 13180268*k^6 + 4494351*k^4 + 99642*k^2 + 1)*x^13/13! + (-k^14 - 896803*k^12 - 116294673*k^10 - 834687179*k^8 - 834687179*k^6 - 116294673*k^4 - 896803*k^2 - 1)*x^15/15! +...
where sn(x,k) = sn(A(x,k), k)/k.
cn(x,k) = 1 - x^2/2! + (4*k^2 + 1)*x^4/4! + (-16*k^4 - 44*k^2 - 1)*x^6/6! + (64*k^6 + 912*k^4 + 408*k^2 + 1)*x^8/8! + (-256*k^8 - 15808*k^6 - 30768*k^4 - 3688*k^2 - 1)*x^10/10! + (1024*k^10 + 259328*k^8 + 1538560*k^6 + 870640*k^4 + 33212*k^2 + 1)*x^12/12! + (-4096*k^12 - 4180992*k^10 - 65008896*k^8 - 106923008*k^6 - 22945056*k^4 - 298932*k^2 - 1)*x^14/14! +...
where cn(x,k) = dn(A(k*x,1/k)/k, k),
and cn(2*A(x,k), k) = -1 + 2*dn(x,k)^2 / (1 - k^6*sn(x,k)^4).
dn(x,k) = 1 - k^2*x^2/2! + (k^4 + 4*k^2)*x^4/4! + (-k^6 - 44*k^4 - 16*k^2)*x^6/6! + (k^8 + 408*k^6 + 912*k^4 + 64*k^2)*x^8/8! + (-k^10 - 3688*k^8 -30768*k^6 - 15808*k^4 - 256*k^2)*x^10/10! + (k^12 + 33212*k^10 + 870640*k^8 + 1538560*k^6 + 259328*k^4 + 1024*k^2)*x^12/12! + (-k^14 - 298932*k^12 - 22945056*k^10 - 106923008*k^8 - 65008896*k^6 - 4180992*k^4 - 4096*k^2)*x^14/14! +...
where dn(x,k) = cn(A(x,k),k).
		

Crossrefs

Programs

  • PARI
    /* Find A such that sn(A,k) = k * sn(x,k) */
    {T(n,r) = my(A=x,V=[k],S=x,C=1-x^2/2);
    for(m=0,n, V=concat(V,[0,0]); A = x*Ser(V);
    S = intformal(C*subst(C,x,A));
    C = 1 - intformal(S*subst(C,x,A));
    V[#V] = -polcoeff(subst(S,x,A)/S,#V-1,x););
    (2*n-1)!*polcoeff(V[2*n-1],2*r-1,k)}
    for(n=1,10, for(r=1,2*n-1, print1(T(n,r),", "));print(""))
    
  • PARI
    {T(n, k) = my(A, m); if( n<0 || k>=(m=2*n+1), 0, A = intformal(1 / sqrt((1 - x^2) * (1 - y^2*x^2) + x*O(x^m))); A = subst(A, x, y * serreverse(A)); m! * polcoeff( polcoeff(A, m), 2*k+1))}; /* Michael Somos, Aug 27 2017 */

Formula

E.g.f. A(x,k) = Sum_{n>=1, r=1..2*n-1} T(n,r) * x^(2*n-1) * k^(2*r-1)/(2*n-1)!, satisfies:
(1) sn(A(x,k), k) = k * sn(x,k),
(2) cn(A(x,k), k) = dn(x,k),
(3) dn(A(k*x,1/k)/k, k) = cn(x,k),
(4) A(k*A(x,k), 1/k) = k*x,
(5) A(A(x,1/k)/k, k) = x/k,
(6) sn( A^r(x,k), k) = k^r * sn(x,k) where A^r(x,k) = A( A^{r-1}(x,k), k) is the r-th iteration of A(x,k) wrt x, with A^0(x,k) = x.
Row sums of n-th row equals zero for n>1.
T(n+1,1) = (-1)^n for n>=0.
T(n+1, 2*n+1) = ( (2*n)! / (n!*2^n) )^2 = A001818(n) for n>=0.

A171660 Triangle T(n,m) of the expansion coefficients of JacobiCN(x,y) + JacobiDN(x,y) = Sum_{n>=0} Sum_{k=0..n} (-1)^n*T(n,m)*x^(2*n)*y^(2*m)/(2*n)!.

Original entry on oeis.org

2, 1, 1, 1, 8, 1, 1, 60, 60, 1, 1, 472, 1824, 472, 1, 1, 3944, 46576, 46576, 3944, 1, 1, 34236, 1129968, 3077120, 1129968, 34236, 1, 1, 303028, 27126048, 171931904, 171931904, 27126048, 303028, 1, 1, 2706800, 653677408, 8874639488, 19720976896
Offset: 0

Views

Author

Roger L. Bagula, Dec 14 2009

Keywords

Comments

Row sums are 2*A000364(n).
Since the coefficients of JacobiCN are in A060627 and the coefficients of JacobiDN are obtained by row-reversal of A060627, this triangle here is a symmetrized variant, adding A060627 and its mirrored version.

Examples

			2;
1, 1;
1, 8, 1;
1, 60, 60, 1;
1, 472, 1824, 472, 1;
1, 3944, 46576, 46576, 3944, 1;
1, 34236, 1129968, 3077120, 1129968, 34236, 1;
1, 303028, 27126048, 171931904, 171931904, 27126048, 303028, 1;
1, 2706800, 653677408, 8874639488, 19720976896, 8874639488, 653677408, 2706800, 1;
1, 24279312, 15877769376, 440712200064, 1948265426688, 1948265426688, 440712200064, 15877769376, 24279312, 1;
1, 218186164, 388726995744, 21489645169920, 176743676925696, 343497841920000, 176743676925696, 21489645169920, 388726995744, 218186164, 1;
		

Crossrefs

Cf. A060627.

Programs

  • Maple
    A171660 := proc(n,m) JacobiCN(z,k) +JacobiDN(z,k) ; coeftayl(%,z=0,2*n) ; (-1)^n*coeftayl(%,k=0,2*m)*(2*n)! ; end proc: # R. J. Mathar, Jan 30 2011
  • Mathematica
    p[t_] = JacobiCN[t, x] + JacobiDN[t, x]
    a = Table[ CoefficientList[FullSimplify[ExpandAll[(-1)^Floor[n/2]*n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 20, 2}]
    Flatten[a]
Showing 1-10 of 10 results.