A002776 Terms in certain determinants.
1, 5, 34, 258, 2136, 19320, 190800, 2051280, 23909760, 300827520, 4067884800, 58877280000, 908666035200, 14901260774400, 258832346572800, 4748165630208000, 91746433658880000, 1862735060938752000, 39649900359573504000, 883021783867711488000
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..100
- J. D. H. Dickson, Discussion of two double series arising from the number of terms in determinants of certain forms, Proc. London Math. Soc., 10 (1879), 120-122.
- J. D. H. Dickson, Discussion of two double series arising from the number of terms in determinants of certain forms, Proc. London Math. Soc., 10 (1879), 120-122. [Annotated scanned copy]
Crossrefs
Cf. A047922.
Programs
-
GAP
A002776 := List([0..100], n -> Factorial(n+3) - 5 * Factorial(n+2) + 6 * Factorial(n+1) - Factorial(n)); # Muniru A Asiru, Jan 15 2018
-
Magma
[(n^3+n^2+2*n+1)*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Jan 19 2018
-
Maple
A002776 := [seq(factorial(n+3) - 5 * factorial(n+2) + 6 * factorial(n+1) - factorial(n), n=0..100)]; # Muniru A Asiru, Jan 15 2018
-
Mathematica
Table[(n^3+n^2+2n+1)n!,{n,0,30}] (* Harvey P. Dale, Oct 28 2011 *)
Formula
a(n) = (n^3 + n^2 + 2*n + 1)*n!.
a(n) = (n+3)! - 5*(n+2)! + 6*(n+1)! - n!. - Umut Özer, Dec 26 2017
E.g.f.: (1 + x + 3*x^2 + x^3)/(1 - x)^4. - Stefano Spezia, Apr 17 2022
Extensions
Edited by Dean Hickerson, Sep 20 2002
Comments