cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002790 Denominators of Cauchy numbers of second type (= Bernoulli numbers B_n^{(n)}).

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 84, 24, 90, 20, 132, 24, 5460, 840, 360, 16, 1530, 180, 7980, 840, 13860, 440, 1656, 720, 81900, 6552, 216, 112, 3480, 240, 114576, 7392, 117810, 2380, 1260, 72, 3838380, 207480, 32760, 560, 568260, 27720, 238392, 55440, 869400, 2576, 236880
Offset: 0

Views

Author

Keywords

Comments

The numerators are given in A002657.
These coefficients (with alternating signs) are also known as the Nørlund [or Norlund, Noerlund or Nörlund] numbers.
A simple series with the signless Cauchy numbers of second type C2(n) leads to Euler's constant: gamma = 1 - Sum_{n >=1} C2(n)/(n*(n+1)!) = 1 - 1/4 - 5/72 - 1/32 - 251/14400 - 19/1728 - 19087/2540160 - ..., see references [Blagouchine] below, as well as A075266 and A262235. - Iaroslav V. Blagouchine, Sep 15 2015
a(n) appears to be divisible by n+1. - Hal M. Switkay, Aug 15 2025

Examples

			1, 1/2, 5/6, 9/4, 251/30, 475/12, 19087/84, 36799/24, 1070017/90, ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
  • L. M. Milne-Thompson, Calculus of Finite Differences, 1951, p. 136.
  • N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(-x/((1-x)*Log(1-x)) )); [Denominator(Factorial(n-1)*b[n]): n in [1..m-1]]; // G. C. Greubel, Oct 28 2018
  • Maple
    A002790 := proc(n)
        denom(add((-1)^k*Stirling1(n, k)/(k+1), k=0..n)) ;
    end proc: # Peter Luschny, Apr 28 2009
    v := proc(n) option remember; ifelse(n=0, 1, 1 - add(v(i)/(n-i+1), i=0..n-1)) end:
    seq(denom(n!*v(n)), n = 0..46); # after Vladimir Kruchinin, Peter Luschny, Aug 17 2025
  • Mathematica
    Table[ Denominator[ NorlundB[n, n]], {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Dec 30 2010 *)
  • Maxima
    v(n):=if n=0 then 1 else 1-sum(v(i)/(n-i+1),i,0,n-1);
    makelist(denom(n!*v(n)),n,0,10); /* Vladimir Kruchinin, Aug 28 2013 */
    

Formula

Denominator of integral of x(x+1)...(x+n-1) from 0 to 1.
E.g.f.: -x/((1-x)*log(1-x)). - Corrected by Iaroslav V. Blagouchine, May 07 2016.
Denominator of Sum_{k=0..n} (-1)^k A008275(n,k)/(k+1). - Peter Luschny, Apr 28 2009
a(n) = denominator(n!*v(n)), where v(n) = 1 - Sum_{i=0..n-1} v(i)/(n-i+1), v(0)=1. - Vladimir Kruchinin, Aug 28 2013