A146761 Period 6: repeat [0, 0, 6, 6, 3, 3].
0, 0, 6, 6, 3, 3, 0, 0, 6, 6, 3, 3, 0, 0, 6, 6, 3, 3, 0, 0, 6, 6, 3, 3, 0, 0, 6, 6, 3, 3, 0, 0, 6, 6, 3, 3, 0, 0, 6, 6, 3, 3, 0, 0, 6, 6, 3, 3, 0, 0, 6, 6, 3, 3, 0, 0, 6, 6, 3, 3, 0, 0, 6, 6, 3, 3, 0, 0, 6, 6, 3, 3, 0, 0, 6, 6, 3, 3, 0, 0, 6, 6, 3, 3, 0, 0, 6
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,-1,1,-1,1).
Crossrefs
Cf. A002798.
Programs
-
Magma
&cat[[0, 0, 6, 6, 3, 3]^^20]; // Wesley Ivan Hurt, Jun 18 2016
-
Maple
A146761:=n->[0, 0, 6, 6, 3, 3][(n mod 6)+1]: seq(A146761(n), n=0..100); # Wesley Ivan Hurt, Jun 18 2016
-
Mathematica
PadRight[{}, 108, {0,0,6,6,3,3}] (* Harvey P. Dale, May 01 2012 *)
Formula
From Richard Choulet, Dec 02 2008: (Start)
a(n+6) = a(n) with a(0)=a(1)=0, a(2)=a(3)=6, a(4)=a(5)=3.
O.g.f: f(z)=a(0)+a(1)*z+...=((6*z^2+3*z^4)/((1-z)*(1+z+z^2)*(1-z+z^2))).
a(n) = 3-sqrt(3)*sin(2*Pi*n/3)-3*cos(Pi*n/3). (End)
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) for n>4. - Wesley Ivan Hurt, Jun 18 2016
Comments