A002819 Liouville's function L(n) = partial sums of A008836.
0, 1, 0, -1, 0, -1, 0, -1, -2, -1, 0, -1, -2, -3, -2, -1, 0, -1, -2, -3, -4, -3, -2, -3, -2, -1, 0, -1, -2, -3, -4, -5, -6, -5, -4, -3, -2, -3, -2, -1, 0, -1, -2, -3, -4, -5, -4, -5, -6, -5, -6, -5, -6, -7, -6, -5, -4, -3, -2, -3, -2, -3, -2, -3, -2, -1, -2, -3, -4, -3, -4, -5, -6, -7, -6, -7, -8, -7, -8, -9, -10, -9, -8, -9, -8, -7, -6
Offset: 0
References
- H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409.
- H. Gupta, A table of values of Liouville's function L(n), Research Bulletin of East Panjab University, No. 3 (Feb. 1950), 45-55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Peter Borwein, Ron Ferguson, and Michael J. Mossinghoff, Sign changes in sums of the Liouville function. Math. Comp. 77 (2008), 1681-1694.
- Benoit Cloitre, A tauberian approach to RH, arXiv preprint arXiv:1107.0812 [math.NT], 2011-2017.
- H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409. [Annotated scanned copy]
- H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409. [Annotated scanned copy]
- D. T. Haimo, Experimentation and Conjecture Are Not Enough, The American Mathematical Monthly Volume 102 Number 2, 1995, page 105.
- R. S. Lehman, On Liouville's function, Math. Comp., 14 (1960), 311-320.
- Michael J. Mossinghoff and Timothy S. Trudgian, A tale of two omegas, arXiv:1906.02847 [math.NT], 2019.
- Ben Sparks, 906,150,257 and the Pólya conjecture (MegaFavNumbers), SparksMath video (2020)
- M. Tanaka, A Numerical Investigation on Cumulative Sum of the Liouville Function, Tokyo J. Math. 3, 187-189, 1980.
- Eric Weisstein's World of Mathematics, Liouville Function
Programs
-
Haskell
a002819 n = a002819_list !! n a002819_list = scanl (+) 0 a008836_list -- Reinhard Zumkeller, Nov 19 2011
-
Maple
A002819 := n -> add((-1)^numtheory[bigomega](i),i=1..n): # Peter Luschny, Sep 15 2011
-
Mathematica
Accumulate[Join[{0},LiouvilleLambda[Range[90]]]] (* Harvey P. Dale, Nov 08 2011 *)
-
PARI
a(n)=sum(i=1,n,(-1)^bigomega(i))
-
PARI
a(n)=my(v=vectorsmall(n,i,1)); forprime(p=2,sqrtint(n), for(e=2,logint(n,p), forstep(i=p^e, n, p^e, v[i]*=-1))); forprime(p=2,n, forstep(i=p, n, p, v[i]*=-1)); sum(i=1,#v,v[i]) \\ Charles R Greathouse IV, Aug 20 2016
-
Python
from functools import reduce from operator import ixor from sympy import factorint def A002819(n): return sum(-1 if reduce(ixor, factorint(i).values(),0)&1 else 1 for i in range(1,n+1)) # Chai Wah Wu, Dec 19 2022
Formula
a(n) = determinant of A174856. - Mats Granvik, Mar 31 2010
a(n) = Sum_{k=1..floor(sqrt(n))} A002321(floor(n / k^2)). - Daniel Suteu, May 30 2025
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jul 09 2001
Comments