A002831 Number of 3-edge-colored connected trivalent graphs with 2n nodes.
1, 4, 11, 60, 318, 2806, 29359, 396196, 6231794, 112137138, 2249479114, 49691965745, 1197158348160, 31230408793660, 876971159096883, 26374570956403684, 845812191249484022, 28812214090645864661, 1038982259432805270094, 39540452134474760212909
Offset: 1
Keywords
References
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..30
- Rémi Bottinelli, Laura Ciobanu, and Alexander Kolpakov, Three-dimensional maps and subgroup growth, manuscripta math. (2021).
- L. Ciobanu and A. Kolpakov, Three-dimensional maps and subgroup growth, arXiv:1712.01418 [math.GR], 2017.
- R. C. Read, Letter to N. J. A. Sloane, Feb 04 1971
- Neriman Tokcan, Jonathan Gryak, Kayvan Najarian, and Harm Derksen, Algebraic Methods for Tensor Data, arXiv:2005.12988 [math.RT], 2020.
- Eric Weisstein's World of Mathematics, Euler Transform
Programs
-
Mathematica
terms = 20; permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t k; s += t]; s!/m]; b[k_, q_] := If[OddQ[q], If[OddQ[k], 0, j = k/2; q^j (2 j)!/(j! 2^j)], Sum[ Binomial[k, 2 j] q^j (2 j)!/(j! 2^j), {j, 0, Quotient[k, 2]}]]; pm[v_] := Module[{p = Total[x^v]}, Product[ b[Coefficient[p, x, i], i], {i, 1, Exponent[p, x]}]]; a2830[n_] := Module[{s = 0}, Do[ s += permcount[p] pm[p]^3, {p, IntegerPartitions[2 n]}]; s/(2 n)!]; G[x_] = 1 + Sum[a2830[n] x^n, {n, 1, terms+1}]; gf = Sum[MoebiusMu[k] Log[G[x^k]]/k, {k, 1, terms+1}] + O[x]^(terms+1); CoefficientList[gf, x] // Rest (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
Formula
G.f.: sum(mobius(k) * log(G(x^k)) / k, k >= 1) where G(x) is the g.f. for A002830. - Sean A. Irvine, Sep 09 2014
Asymptotics: a(n) ~ (2/Pi)^(1/2)*(2/e)^n*n^{n - 1/2}; cf. Ciobanu and Kolpakov in Links. - Sasha Kolpakov, Dec 17 2017
Extensions
a(5) and a(6) corrected and new terms a(7) and a(8) computed by Sean A. Irvine, Sep 09 2014
a(9)-a(10) from Sasha Kolpakov, Dec 11 2017
a(11) and beyond from Andrew Howroyd, Dec 14 2017
Comments