A002854 Number of unlabeled Euler graphs with n nodes; number of unlabeled two-graphs with n nodes; number of unlabeled switching classes of graphs with n nodes; number of switching classes of unlabeled signed complete graphs on n nodes; number of Seidel matrices of order n.
1, 1, 2, 3, 7, 16, 54, 243, 2038, 33120, 1182004, 87723296, 12886193064, 3633057074584, 1944000150734320, 1967881448329407496, 3768516017219786199856, 13670271807937483065795200, 94109042015724412679233018144, 1232069666043220685614640133362240
Offset: 1
Examples
From _Joerg Arndt_, Feb 05 2010: (Start) The a(4) = 3 Euler graphs on four nodes are: 1) o o 2) o-o 3) o-o o o |/ | | o o o-o (End)
References
- F. Buekenhout, ed., Handbook of Incidence Geometry, 1995, p. 881.
- F. C. Bussemaker, R. A. Mathon and J. J. Seidel, Tables of two-graphs, T.H.-Report 79-WSK-05, Technological University Eindhoven, Dept. Mathematics, 1979; also pp. 71-112 of "Combinatorics and Graph Theory (Calcutta, 1980)", Lect. Notes Math. 885, 1981.
- CRC Handbook of Combinatorial Designs, 1996, p. 687.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 114, Eq. (4.7.1).
- R. W. Robinson, Enumeration of Euler graphs, pp. 147-153 of F. Harary, editor, Proof Techniques in Graph Theory. Academic Press, NY, 1969.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1979.
- J. J. Seidel, A survey of two-graphs, pp. 481-511 of Colloquio Internazionale sulle Teorie Combinatorie (Roma, 1973), Vol. I, Accademia Nazionale dei Lincei, Rome, 1976; also pp. 146-176 in Geometry and Combinatorics: Selected Works of J.J. Seidel, ed. D.G. Corneil and R. Mathon, Academic Press, Boston, 1991..
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Max Alekseyev, Table of n, a(n) for n = 1..88 (terms 1..26 from R. W. Robinson).
- P. J. Cameron, Cohomological aspects of two-graphs, Math. Zeit., 157 (1977), 101-119.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs., 3 (2000), #00.1.5.
- P. J. Cameron and C. R. Johnson, The number of equivalence patterns of symmetric sign patterns, Discr. Math., 306 (2006), 3074-3077.
- G. Greaves, J. H. Koolen, A. Munemasa, and F. Szöllősi, Equiangular lines in Euclidean spaces, arXiv:1403.2155 [math.CO], 2014.
- Akihiro Higashitani and Kenta Ueyama, Combinatorial classification of (+/-1)-skew projective spaces, arXiv:2107.12927 [math.RA], 2021.
- Akihiro Higashitani and Kenta Ueyama, Combinatorics of graded module categories over skew polynomial algebras at roots of unity, arXiv:2409.10904 [math.RA], 2024. See p. 11.
- T. R. Hoffman and J. P. Solazzo, Complex Two-Graphs via Equiangular Tight Frames, arXiv:1408.0334 [math.CO], 2014.
- Michael Hofmeister, Counting double covers of graphs, Journal of Graph Theory 12.3 (1988), 437-444. (Beware of a typo!)
- V. A. Liskovec, Enumeration of Euler Graphs, (in Russian), Akademiia Navuk BSSR, Minsk., 6 (1970), 38-46. (annotated scanned copy)
- C. L. Mallows and N. J. A. Sloane, Two-graphs, switching classes and Euler graphs are equal in number, SIAM J. Appl. Math., 28 (1975), 876-880. (copy at N. J. A. Sloane's home page)
- Brendan D. McKay, Eulerian graphs
- R. E. Peile, Letter to N. J. A. Sloane, Feb 1989.
- R. C. Read, Letter to N. J. A. Sloane, Nov. 1976.
- R. W. Robinson, Enumeration of Euler graphs, pp. 147-153 of F. Harary, editor, Proof Techniques in Graph Theory. Academic Press, NY, 1969. (Annotated scanned copy)
- N. J. A. Sloane, Switching classes of graphs with 4 nodes.
- F. Szöllosi and Patric R. J. Östergård, Enumeration of Seidel matrices, arXiv:1703.02943 [math.CO], 2017.
- E. Weisstein's World of Mathematics, Eulerian Graph.
- T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982), 47-74.
Crossrefs
Programs
-
PARI
A002854(n)={ /* Robinson's formula, simplified */ local(s=vector(n)); my( S=0, M()=sum( j=2,n, s[j]*sum( i=1,j-1, s[i]*gcd(i,j))) + sum( i=1,n, i*binomial(s[i],2)+(i\2-1)*s[i]) + !!vecextract(s,4^round(n/2)\3), inc()=!forstep(i=n,1,-1,s[i]
n, s[i]=n); next(2))); t==n && S+=2^M()/prod(i=1,n,i^s[i]*s[i]!)); S} \\ M. F. Hasler, Apr 09 2012, adapted for current PARI version on Apr 12, 2018 -
Python
from itertools import combinations from math import prod, factorial, gcd from fractions import Fraction from sympy.utilities.iterables import partitions def A002854(n): return int(sum(Fraction(1<
>1)-1)*r+(q*r*(r-1)>>1) for q, r in p.items())+any(q&1 for q in p),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 03 2024
Formula
a(n) = Sum_{s} 2^M(s)/Product_{i} i^s(i)*s(i)!, where the sum is over n-tuples s in [0..n]^n such that n = Sum i*s(i), M(s) = Sum_{iM. F. Hasler, Apr 15 2012; corrected by Sean A. Irvine, Nov 05 2014
Extensions
Terms up to a(18) confirmed by Vladeta Jovovic, Apr 18 2000
Name edited (changed "2-graph" to "two-graph" to avoid confusion with other 2-graphs) and comments on Eulerian graphs by Thomas Zaslavsky, Nov 21 2013
Name clarified by Thomas Zaslavsky, Apr 18 2019
Comments