Original entry on oeis.org
1, 2, 7, 54, 2038, 1182004, 12886193064, 1944000150734320, 3768516017219786199856, 94109042015724412679233018144, 30739974599837035594494908346443726272, 133517867425328719965824261177376949378463724928, 7828241053490735575604692213976871639067242060743800973568
Offset: 1
Original entry on oeis.org
1, 1, 2, 3, 7, 16, 54, 283
Offset: 0
Original entry on oeis.org
1, 1, 2, 3, 7, 16, 54, 241, 2038, 33120
Offset: 1
- Hofmeister, Michael. "Counting double covers of graphs." Journal of graph theory 12.3 (1988): 437-444.
A003049
Number of connected Eulerian graphs with n unlabeled nodes.
Original entry on oeis.org
1, 0, 1, 1, 4, 8, 37, 184, 1782, 31026, 1148626, 86539128, 12798435868, 3620169692289, 1940367005824561, 1965937435288738165, 3766548132138130650270, 13666503289976224080346733
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 117.
- Valery A. Liskovets, Enumeration of Euler graphs. (Russian), Vesci Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk 1970, No.6, 38-46 (1970). Math. Rev., Vol. 44, 1972, p. 1195, #6557.
- R. W. Robinson, Enumeration of Euler graphs, pp. 147-153 of F. Harary, editor, Proof Techniques in Graph Theory. Academic Press, NY, 1969.
- R. W. Robinson, personal communication.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1979.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Chai Wah Wu, Table of n, a(n) for n = 1..88 (terms 1..60 from Max Alekseyev)
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Erich Friedman, Illustration of initial terms
- V. A. Liskovec, Enumeration of Euler Graphs, (in Russian), Akademiia Navuk BSSR, Minsk., 6 (1970), 38-46. (annotated scanned copy)
- C. L. Mallows and N. J. A. Sloane, Two-graphs, switching classes and Euler graphs are equal in number, SIAM J. Appl. Math., 28 (1975), 876-880.
- C. L. Mallows and N. J. A. Sloane, Two-graphs, switching classes and Euler graphs are equal in number, SIAM J. Appl. Math., 28 (1975), 876-880. [Copy on N. J. A. Sloane's Home Page]
- Brendan McKay, Combinatorial Data (Eulerian graphs).
- R. W. Robinson, Enumeration of Euler graphs, pp. 147-153 of F. Harary, editor, Proof Techniques in Graph Theory. Academic Press, NY, 1969. (Annotated scanned copy)
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Eric Weisstein's World of Mathematics, Eulerian Graph.
-
A002854 = Import["https://oeis.org/A002854/b002854.txt", "Table"][[All, 2]];
(* EulerInvTransform is defined in A022562 *)
EulerInvTransform[A002854] (* Jean-François Alcover, Aug 27 2019, updated Mar 17 2020 *)
-
from functools import lru_cache
from itertools import combinations
from fractions import Fraction
from math import prod, gcd, factorial
from sympy import mobius, divisors
from sympy.utilities.iterables import partitions
def A003049(n):
@lru_cache(maxsize=None)
def b(n): return int(sum(Fraction(1<>1)-1)*r+(q*r*(r-1)>>1) for q, r in p.items())+any(q&1 for q in p),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
@lru_cache(maxsize=None)
def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
return sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n # Chai Wah Wu, Jul 03 2024
a(1)-a(26) were computed by R. W. Robinson
A007869
Number of complementary pairs of graphs on n nodes. Also number of unlabeled graphs with n nodes and an even number of edges.
Original entry on oeis.org
1, 1, 2, 6, 18, 78, 522, 6178, 137352, 6002584, 509498932, 82545586656, 25251015686776, 14527077828617744, 15713242984902154384, 32000507852263779299344, 122967932076766466347469888, 893788862572805850273939095424, 12318904626562502262191503745716384
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..50
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Nevena Francetić, Sarada Herke, and Ian M. Wanless, Parity of Sets of Mutually Orthogonal Latin Squares, arXiv:1703.04764 [math.CO], 2017. See Section 4.1.
- Tadeusz Sozański, Enumeration of weak isomorphism classes of signed graphs, J. Graph Theory 4 (1980), no. 2, 127-144. (Zentralblatt 434 #05059)
- Ferenc Szöllosi, The two-distance sets in dimension four, arXiv:1806.07861 [math.MG], 2018. See Table 1.
Cf.
A054960 for graphs with an odd number of edges.
-
Needs["Combinatorica`"]; Table[Total[Table[NumberOfGraphs[n,m],{m,0,Binomial[n,2],2}]],{n,1,15}] (* Geoffrey Critzer, Oct 20 2012; modified by Harvey P. Dale, Aug 08 2013 *)
-
a(n)={local(p=vector(n));
my(S=0, J() = sum(j=0, floor((n-1)/2), p[2*j+1]),
I2() = (sum(i=1, n, sum(j=1, n, p[i]*p[j]*gcd(i, j))) - J())/2,
M1() = (abs((p[1]-0)*(p[1]-1)) + sum(j=2, n, if(0!=(j%4), p[j], 0))),
inc()=!forstep(i=n, 1, -1, p[i]n, p[i]=n); next(2))); t==n && S+=(if(M1() == 0, 2^I2()/prod(i=1, n, i^p[i]*p[i]!), 0) + 2^I2()/prod(i=1, n, i^p[i]*p[i]!))/2); S} \\ This is a modification of M. F. Hasler's PARI program from A002854. - Petros Hadjicostas, Mar 02 2021
A054732
Number of inequivalent n-state 2-input 2-output automata with respect to input and output permutations.
Original entry on oeis.org
2, 44, 2038, 176936, 20943790, 3108818680, 553255960308, 114776687721990, 27196943499525498, 7246997465494260922, 2144966703605620242622, 698192439379511764136358, 247879443355186031710674326, 95324955498172729163827175460, 39473725728022499730768584065928, 17511877093585563126312782917277602
Offset: 1
- F. Harary and E. Palmer, Graphical Enumeration, 1973.
- Michael A. Harrison, A census of finite automata, Canad. J. Math., 17, No. 1, (1965), 100-113. [See Theorem 6.3 (p. 108) with k = p = 2 and Table V (p. 112).]
-
A054732(n) = {local(p=vector(n)); local(q=matrix(2, 2)); local(qq=matrix(2,2)); q[1, 1] = 2; q[1, 2] = 0; q[2, 1]=0; q[2, 2]=1;
qq[1, 1] = 2; qq[1, 2] = 0; qq[2, 1]=0; qq[2, 2]=1;
my(S=0, A() = sum(jj=1, 2, sum(j=1, 2, prod(r=1, n, prod(s=1, 2, (sumdiv(lcm(r, s), d, if(d < n+1, d*p[d], 0)) * sumdiv(lcm(r, s), d, if(d < 3, d*qq[jj, d], 0)))^(p[r]*q[j, s]*gcd(r, s))))))/4,
inc()=!forstep(i=n, 1, -1, p[i]n, p[i]=n); next(2))); t==n && S+ = A()/prod(i=1, n, i^p[i]*p[i]!)); S} \\ This is a modification of M. F. Hasler's PARI program from A002854. - Petros Hadjicostas, Mar 08 2021
A054050
Number of nonisomorphic binary n-state automata.
Original entry on oeis.org
1, 10, 129, 2836, 83061, 3076386, 136647824, 7081061404, 419223006090, 27914819962058, 2064872379041701, 167986348586006675, 14906892578198245332, 1432903480780688968334, 148318150277923875087238, 16447662583606982784243526, 1945436946407977282783367806, 244476687257496605058725664611
Offset: 1
From _Petros Hadjicostas_, Mar 08 2021: (Start)
For n = 2, we have the partitions 1*2 + 2*0 and 1*0 + 2*1 of 2 (in frequency notation). The corresponding denominators in _Christian G. Bower_'s formula are 1^2*2!*2^0*0! = 2 and 1^0*0!*2^1*1! = 2.
Also, fixA[s_1 = 2, s_2 = 0] = (Sum_{d|1} d*s_d)^(2*s_1) * (Sum_{d|2} d*s_d)^(2*s_2) = (1*s_1)^(2*s_1) = 16. In addition, fixA[s_1 = 0, s_2 = 1] = (Sum_{d|1} d*s_d)^(2*s_1) * (Sum_{d|2} d*s_d)^(2*s_2) = (1*s_1 + 2*s_2)^(2*s_2) = (0 + 2)^2 = 4. Hence a(2) = 16/2 + 4/2 = 10. (End)
- F. Harary and E. Palmer, Graphical Enumeration, 1973.
- M. A. Harrison, A census of finite automata, Canad. J. Math., 17, No. 1, (1965), 100-113. [See p. 107 (Theorem 6.1 with k = 2 and p = 1) and p. 110 (Table I).]
-
A054050(n)={local(p=vector(n));
my(S=0, A() = prod(i=1, n, sumdiv(i, d, d*p[d])^(2*p[i])),
inc()=!forstep(i=n, 1, -1, p[i]n, p[i]=n); next(2))); t==n && S+ = A()/prod(i=1, n, i^p[i]*p[i]!)); S} \\ This is a modification of M. F. Hasler's PARI program from A002854. - Petros Hadjicostas, Mar 08 2021
A182012
Number of graphs on 2n unlabeled nodes all having odd degree.
Original entry on oeis.org
1, 3, 16, 243, 33120, 87723296, 3633057074584, 1967881448329407496, 13670271807937483065795200, 1232069666043220685614640133362240, 1464616584892951614637834432454928487321792, 23331378450474334173960358458324497256118170821672192, 5051222500253499871627935174024445724071241027782979567759187712
Offset: 1
The 3 graphs on 4 vertices are [(0, 3), (1, 3), (2, 3)], [(0, 2), (1, 3)], [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]: the tree with root of order 3, the disconnected graph consisting of two complete 2-vertex graphs, and the complete graph.
-
def graphsodddegree(MAXN=5):
"""
requires optional package "nauty"
"""
an=[]
for n in range(1,MAXN+1):
gn=graphs.nauty_geng("%s"%(2*n))
cac={}
a=0
for G in gn:
d = G.degree_sequence()
if all(i % 2 for i in d):
a += 1
print('a(%s)=%s'%(n,a))
an += [a]
return an
A000282
Finite automata.
Original entry on oeis.org
3, 70, 3783, 338475, 40565585, 6061961733, 1083852977811, 225615988054171, 53595807366038234, 14308700593468127485, 4241390625289880226714, 1382214286200071777573643, 491197439886557439295166226, 189044982636675290371386547592, 78334771617452038208125184627931, 34771576300926271400714044414858372
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Christian G. Bower, PARI programs for transforms, 2007.
- Michael A. Harrison, A census of finite automata, Canad. J. Math., 17, No. 1, (1965), 100-113. [First apply Theorem 6.2 (p. 107) with k = p = 2 to get A054747. Then apply Theorem 7.2 (p. 110) to get the number of classes of connected automata counted by A054747. - _Petros Hadjicostas_, Mar 08 2021]
- N. J. A. Sloane, Maple programs for transforms, 2001-2020.
-
/* This program is a modification of Christian G. Bower's PARI program for the inverse Euler transform from the link above. */
lista(nn) = {local(A=vector(nn+1)); for(n=1, nn+1, A[n]=if(n==1, 1, A054747(n-1))); local(B=vector(#A-1,n,1/n),C); A[1] = 1; C = log(Ser(A)); A=vecextract(A,"2.."); for(i=1, #A, A[i] = polcoeff(C,i)); A = dirdiv(A,B); } \\ Petros Hadjicostas, Mar 08 2021
A049313
Switching classes of tournaments on n nodes.
Original entry on oeis.org
1, 1, 1, 2, 2, 6, 12, 79, 792, 19576, 886288, 75369960, 11856006240, 3467430423264, 1893448825054528, 1938818712501985736, 3737086626658278741376, 13606268915761294708760704, 93863103860384959101157737728
Offset: 1
a(4)=2: the "local orders" form one switching class and the class containing a 3-cycle dominating a point the other.
Showing 1-10 of 24 results.
Comments