cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001372 Number of unlabeled mappings (or mapping patterns) from n points to themselves; number of unlabeled endofunctions.

Original entry on oeis.org

1, 1, 3, 7, 19, 47, 130, 343, 951, 2615, 7318, 20491, 57903, 163898, 466199, 1328993, 3799624, 10884049, 31241170, 89814958, 258604642, 745568756, 2152118306, 6218869389, 17988233052, 52078309200, 150899223268, 437571896993, 1269755237948, 3687025544605, 10712682919341, 31143566495273, 90587953109272, 263627037547365
Offset: 0

Views

Author

Keywords

Examples

			The a(3) = 7 mappings are:
1->1, 2->2, 3->3
1->1, 2->2, 3->1 (equiv. to 1->1, 2->2, 3->2, or 1->1, 2->1, 3->3, etc.)
1->1, 2->3, 3->2
1->1, 2->1, 3->2
1->1, 2->1, 3->1
1->2, 2->3, 3->1
1->2, 2->1, 3->1
		

References

  • F. Bergeron, G. Labelle, and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 41, 209.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.6.
  • R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.401.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 70, Table 3.4.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(combstruct): M[ 2671 ] := [ F,{F=Set(K), K=Cycle(T), T=Prod(Z,Set(T))},unlabeled ]:
    a:=seq(count(M[2671],size=n),n=0..27); # added by W. Edwin Clark, Nov 23 2010
  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,1,30}]],1];CoefficientList[Series[Product[1/(1-x^i)^c[[i]],{i,1,nn-1}],{x,0,nn}],x]  (* after code given by Robert A. Russell in A000081 *) (* Geoffrey Critzer, Oct 12 2012 *)
    max = 40; A[n_] := A[n] = If[n <= 1, n, Sum[DivisorSum[j, #*A[#]&]*A[n-j], {j, 1, n-1}]/(n-1)]; H[t_] := Sum[A[n]*t^n, {n, 0, max}]; F = 1 / Product[1 - H[x^n], {n, 1, max}] + O[x]^max; CoefficientList[F, x] (* Jean-François Alcover, Dec 01 2015, after Joerg Arndt *)
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
    A000081=concat([0], A);
    H(t)=subst(Ser(A000081, 't), 't, t);
    x='x+O('x^N);
    F=1/prod(n=1,N, 1 - H(x^n));
    Vec(F)
    \\ Joerg Arndt, Jul 10 2014

Formula

Euler transform of A002861.
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.9557652856519949747148... (Otter's rooted tree constant), c = 0.442876769782206479836... (for a closed form see "Mathematical Constants", p.308). - Vaclav Kotesovec, Mar 17 2015

Extensions

More terms etc. from Paul Zimmermann, Mar 15 1996
Name edited by Keith J. Bauer, Jan 07 2024

A048888 a(n) = Sum_{m=1..n} T(m,n+1-m), array T as in A048887.

Original entry on oeis.org

0, 1, 2, 4, 7, 13, 23, 42, 76, 139, 255, 471, 873, 1627, 3044, 5718, 10779, 20387, 38673, 73561, 140267, 268065, 513349, 984910, 1892874, 3643569, 7023561, 13557019, 26200181, 50691977, 98182665, 190353369, 369393465, 717457655
Offset: 0

Views

Author

Keywords

Comments

From Marc LeBrun, Dec 12 2001: (Start)
Define a "numbral arithmetic" by replacing addition with binary bitwise inclusive-OR (so that [3] + [5] = [7] etc.) and multiplication becomes shift-&-OR instead of shift-&-add (so that [3] * [3] = [7] etc.). [d] divides [n] means there exists an [e] with [d] * [e] = [n]. For example the six divisors of [14] are [1], [2], [3], [6], [7] and [14]. Then it appears that this sequence gives the number of proper divisors of [2^n-1]. Conjecture confirmed by Richard C. Schroeppel, Dec 14 2001. (End)
The number of "prime endofunctions" on n points, meaning the cardinality of the subset of the A001372(n) mappings (or mapping patterns) up to isomorphism from n (unlabeled) points to themselves (endofunctions) which are neither the sum of prime endofunctions (i.e., whose disjoint connected components are prime endofunctions) nor the categorical product of prime endofunctions. The n for which a(n) is prime (n such that the number of prime endofunctions on n points is itself prime) are 2, 4, 5, 6, 9, 13, 19, ... - Jonathan Vos Post, Nov 19 2006
For n>=1, compositions p(1)+p(2)+...+p(m)=n such that p(k)<=p(1)+1, see example. - Joerg Arndt, Dec 28 2012

Examples

			From _Joerg Arndt_, Dec 28 2012: (Start)
There are a(6)=23 compositions p(1)+p(2)+...+p(m)=6 such that p(k)<=p(1)+1:
[ 1]  [ 1 1 1 1 1 1 ]
[ 2]  [ 1 1 1 1 2 ]
[ 3]  [ 1 1 1 2 1 ]
[ 4]  [ 1 1 2 1 1 ]
[ 5]  [ 1 1 2 2 ]
[ 6]  [ 1 2 1 1 1 ]
[ 7]  [ 1 2 1 2 ]
[ 8]  [ 1 2 2 1 ]
[ 9]  [ 2 1 1 1 1 ]
[10]  [ 2 1 1 2 ]
[11]  [ 2 1 2 1 ]
[12]  [ 2 1 3 ]
[13]  [ 2 2 1 1 ]
[14]  [ 2 2 2 ]
[15]  [ 2 3 1 ]
[16]  [ 3 1 1 1 ]
[17]  [ 3 1 2 ]
[18]  [ 3 2 1 ]
[19]  [ 3 3 ]
[20]  [ 4 1 1 ]
[21]  [ 4 2 ]
[22]  [ 5 1 ]
[23]  [ 6 ]
(End)
		

Crossrefs

Programs

  • PARI
    N = 66;  x = 'x + O('x^N);
    gf = sum(n=0,N,  (1-x^n)*x^n/(1-2*x+x^(n+1)) ) + 'c0;
    v = Vec(gf);  v[1]-='c0;  v
    /* Joerg Arndt, Apr 14 2013 */

Formula

G.f.: Sum_{k>0} x^k*(1-x^k)/(1-2*x+x^(k+1)). - Vladeta Jovovic, Feb 25 2003
a(m) = Sum_{ n=2..m+1 } Fn(m) where Fn is a Fibonacci n-step number (Fibonacci, tetranacci, etc.) indexed as in A000045, A000073, A000078. - Gerald McGarvey, Sep 25 2004

A054745 Number of nonisomorphic binary n-state automata without output under input permutations.

Original entry on oeis.org

1, 1, 7, 74, 1474, 41876, 1540696, 68343112, 3540691525, 209612916303, 13957423192794, 1032436318269648, 83993175608894096, 7453446303042245261, 716451740543945788671, 74159075140708644544128, 8223831291824019614386868, 972718473204236819072891710
Offset: 0

Views

Author

Vladeta Jovovic, Apr 22 2000

Keywords

Comments

Also isomorphism classes of unordered pairs of endofunctions i.e. an unorder pair {f,g} of functions from {1,...,n} to itself. - Christian G. Bower, Dec 18 2003

References

  • F. Harary and E. Palmer, Graphical Enumeration, 1973.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
          {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
        end:
    a:= proc(n) option remember; add(add(mul(mul(add(coeff(s, x, d)
          *d, d=divisors(ilcm(i, j)))^(igcd(i, j)*coeff(s, x, i)*
          coeff(t, x, j)), j=1..degree(t)), i=1..degree(s))
          /mul(i^coeff(t, x, i)*coeff(t, x, i)!, i=1..degree(t))
          /mul(i^coeff(s, x, i)*coeff(s, x, i)!, i=1..degree(s))
          , t=b(2$2)), s=b(n$2))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 15 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, {0}, If[i<1, {}, Table[Map[Function[{p}, p + j*x^i], b[n - i*j, i-1]], {j, 0, n/i}] // Flatten // Union]];
    a[n_] := a[n] = Sum[Sum[Product[Product[With[{g = GCD[i, j]*Coefficient[s, x, i]*Coefficient[t, x, j]}, If[g==0, 1, Sum[Coefficient[s, x, d]*d, {d, Divisors[LCM[i, j]]}]^g]], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/
    Product[i^Coefficient[t, x, i]Coefficient[t, x, i]!, {i, Exponent[t, x]}]/
    Product[i^Coefficient[s, x, i]Coefficient[s, x, i]!, {i, Exponent[s, x]}], {t, b[2, 2]}], {s, b[n, n]}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 16 2015, after Alois P. Heinz, updated Jan 01 2021 *)

Formula

a(n) = sum {1*s_1+2*s_2+...=n, 1*t_1+2*t_2=2} (fixA[s_1, s_2, ...;t_1, t_2]/(1^s_1*s_1!*2^s_2*s_2!*...*1^t_1*t_1!*2^t_2*t_2!)) where fixA[...] = prod {i, j>=1} ( (sum {d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*t_j)). - Christian G. Bower, Dec 18 2003

Extensions

More terms from Alois P. Heinz, Aug 15 2014

A054052 Number of nonisomorphic n-state automata with binary inputs and outputs.

Original entry on oeis.org

4, 136, 7860, 703760, 83731616, 12434579448, 2213014106124, 459106576445584, 108787771126443552, 28987989805582701000, 8579866813375037411844, 2792769757495835238342624, 991517773420290134796904064, 381299821992680629261308708504, 157894902912089771345216547890976, 70047508374342247037912201234627760
Offset: 1

Views

Author

Vladeta Jovovic, Apr 29 2000

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, 1973.

Crossrefs

Programs

  • PARI
    A054052(n) = {local(p=vector(n)); my(S=0, A() = prod(i=1, n, sumdiv(i, d, 2*d*p[d])^(2*p[i])), inc()=!forstep(i=n, 1, -1, p[i]n, p[i]=n); next(2))); t==n && S+ = A()/prod(i=1, n, i^p[i]*p[i]!)); S} \\ This is a modification of M. F. Hasler's PARI program from A002854. - Petros Hadjicostas, Mar 08 2021

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...), where fixA[s_1, s_2, ...] = Product_{i>=1} (Sum_{d|i} 2*d*s_d)^(2*s_i). - [Modified from Christian G. Bower's contribution in A054050 by Petros Hadjicostas, Mar 08 2021 using Theorem 6.1 in Harrison (1965) with k = 2 inputs and p = 2 outputs.]

Extensions

Terms a(14)-a(16) from Petros Hadjicostas, Mar 08 2021.

A054051 Number of nonisomorphic connected binary n-state automata.

Original entry on oeis.org

1, 9, 119, 2662, 79154, 2962062, 132536919, 6904606698, 410379198542, 27406396140548, 2031843175944876, 165592123280454675, 14715292998356150461, 1416127682894394114138, 146723247630856311651736, 16284075762705841850155071, 1927434528878738556115924081, 242361176791511465207020367116
Offset: 1

Views

Author

Vladeta Jovovic, Apr 29 2000

Keywords

Comments

Inverse Euler transform of A054050.

References

  • F. Harary and E. Palmer, Graphical Enumeration, 1973. [See Section 6.5, pp. 146-150.]

Crossrefs

Programs

  • PARI
    /* This program is a modification of Christian G. Bower's PARI program for the inverse Euler transform from the link above. */
    lista(nn) = {local(A=vector(nn+1)); for(n=1, nn+1, A[n]=if(n==1, 1, A054050(n-1))); local(B=vector(#A-1, n, 1/n), C); A[1] = 1; C = log(Ser(A)); A=vecextract(A, "2.."); for(i=1, #A, A[i] = polcoeff(C, i)); A = dirdiv(A, B); } \\ Petros Hadjicostas, Mar 08 2021

Extensions

Terms a(16)-a(18) from Petros Hadjicostas, Mar 08 2021

A124933 Number of prime divisors (counted with multiplicity) of number of endofunctions on n points (A001372).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 3, 3, 2, 2, 2, 2, 2, 4, 2, 3, 5, 3, 3, 3, 3, 5, 3, 2, 7, 9, 5, 3, 5, 5, 6, 3, 5, 6, 1, 2, 5, 4, 3, 4, 3, 3, 7, 7, 5, 7, 8, 4, 12, 7, 8, 1, 7, 4, 2, 4, 5, 4, 2, 5, 4, 3, 5, 6, 12, 2, 3, 5, 2, 3, 4, 4, 3, 5, 6, 2, 6, 3, 5, 3, 7, 2, 3, 7, 7, 8, 6, 5, 2, 7, 7, 4, 10, 11, 7, 7, 5, 4, 5, 6
Offset: 0

Views

Author

Jonathan Vos Post, Nov 12 2006

Keywords

Comments

Number of prime divisors (counted with multiplicity) of A001372 Number of mappings (or mapping patterns) from n points to themselves; number of endofunctions. {n: a(n) = 1} give the primes, beginning: A001372(2) = 3, A001372(3) = 7, A001372(4) = 19, A001372(2) = 47. {n: a(n) = 2} give the semiprimes, beginning: A001372(8) = 951 = 3 * 317, A001372(9) = 2615 = 5 * 523, A001372(10) = 7318 = 2 * 3659, A001372(11) = 20491 = 31 * 661, A001372(12) = 57903 = 3 * 19301, A001372(14) = 466199 = 107 * 4357, A001372(23) = 6218869389 = 3 * 2072956463. 3-almost primes begin: A001372(6) = 130 = 2 * 5 * 13, A001372(7) = 343 = 7^3, A001372(15) = 1328993 = 19 * 113 * 619, A001372(17) = 10884049 = 11 * 353 * 2803, A001372(18) = 31241170 = 2 * 5 * 3124117, A001372(19) = 89814958 = 2 * 5113 * 8783, A001372(20) = 258604642 = 2 * 101 * 1280221, A001372(22) = 2152118306 = 2 * 13 * 82773781, A001372(27) = 437571896993.

Crossrefs

Formula

a(n) = Omega(A001372(n)) = A001222(A001372(n)).

Extensions

More terms from R. J. Mathar, Sep 23 2007
Showing 1-6 of 6 results.