cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002543 Complete Post functions of n variables.

Original entry on oeis.org

0, 2, 16, 980, 9332768
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Wheeler, Roger F.; Complete propositional connectives. Z. Math. Logik Grundlagen Math. 7 1961 185-198.
  • Wheeler, Roger F.; Complete connectives for the 3-valued propositional calculus. Proc. London Math. Soc. (3) 16 1966 167-191.

Crossrefs

A055152 Proper covers of an unlabeled n-set.

Original entry on oeis.org

0, 1, 14, 956, 9331320, 6406603065901952, 16879085743296493569230716352778240, 717956902513121252476003434439730211883694285987816199468264943161704448
Offset: 1

Views

Author

Vladeta Jovovic, Jun 14 2000

Keywords

Crossrefs

See A007537 for labeled case. Cf. A055621.

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0, 2^(w-> add(mul(2^igcd(t, l[h]),
          h=1..nops(l)), t=1..w)/w)(ilcm(l[])), `if`(i<1, 0,
          add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i)))
        end:
    a:= n->  (b(n$2, [])-2*b(n-1$2, []))/4:
    seq(a(n), n=1..8);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    b[n_] := Sum[1/Function[p, Product[Function[c, j^c*c!][Coefficient[p, x, j]], {j, 1, Exponent[p, x]}]][Total[x^l]]*2^(Function[w, Sum[Product[ 2^GCD[t, l[[i]]], {i, 1, Length[l]}], {t, 1, w}]/w][If[l == {}, 1, LCM @@ l]]), {l, IntegerPartitions[n]}];
    a[n_] := (b[n] - 2 b[n - 1])/4;
    a /@ Range[8] (* Jean-François Alcover, Feb 19 2020, after Alois P. Heinz in A000612 *)

Formula

a(n) = (A003180(n) - 2*A003180(n-1))/4.
Apparently a(n) = A002857(n) - A000612(n-1). - R. J. Mathar, Apr 22 2007

Extensions

More terms from David Wasserman, Mar 21 2002

A262546 Number of Post functions of n variables which fail to satisfy Post's second condition.

Original entry on oeis.org

1, 1, 4, 16, 544
Offset: 1

Views

Author

N. J. A. Sloane, Oct 06 2015

Keywords

Crossrefs

Equals A002857 - A002543.

A262547 Nearest integer to 2^(2^n)/(4*n!).

Original entry on oeis.org

1, 2, 11, 683, 8947849, 6405119470038039, 16879085660760836481318184892448820, 717956902513121251386228825698709746114025202539934052824017757985572480
Offset: 1

Views

Author

N. J. A. Sloane, Oct 06 2015

Keywords

Crossrefs

An approximation to A002857.
Showing 1-4 of 4 results.