cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002857 Number of Post functions of n variables.

Original entry on oeis.org

1, 3, 20, 996, 9333312, 6406603084568576, 16879085743296493582043922521915392, 717956902513121252476003434439730211917452457474409186632352788205535232
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Roger F. Wheeler, Complete propositional connectives. Z. Math. Logik Grundlagen Math. 7, 1961, 185-198.

Crossrefs

Equals A000612/2 and A003180/4.

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0, 2^(w-> add(mul(2^igcd(t, l[h]),
          h=1..nops(l)), t=1..w)/w)(ilcm(l[])), `if`(i<1, 0,
          add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i)))
        end:
    a:= n-> b(n$2, [])/4:
    seq(a(n), n=1..8);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    b[n_, i_, l_] := If[n==0, 2^Function[w, Sum[Product[2^GCD[t, l[[h]]], {h, 1, Length[l]}], {t, 1, w}]/w][LCM @@ l], If[i < 1, 0, Sum[b[n - i j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]]];
    a[n_] := b[n, n, {}]/4;
    Array[a, 8] (* Jean-François Alcover, Oct 27 2020, after Alois P. Heinz *)

Formula

Conjecture: a(n) = A055621(n) - A055152(n). - R. J. Mathar, Oct 14 2022

Extensions

More terms from Vladeta Jovovic, Feb 23 2000

A095421 Triangle read by rows: T(n,m) = number of m-block proper covers (without empty blocks and without multiple blocks) of a labeled n-set (n>=2, 2<=m<=2^n-2).

Original entry on oeis.org

1, 6, 17, 15, 6, 1, 25, 230, 861, 1918, 2975, 3428, 3003, 2002, 1001, 364, 91, 14, 1, 90, 2125, 20930, 127701, 568820, 2003635, 5820750, 14282125, 30030000, 54620475, 86490950, 119759325, 145422600, 155117515, 145422675, 119759850, 86493225
Offset: 2

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 04 2004

Keywords

Examples

			1;
6,17,15,6,1;
25,230,861,1918,2975,3428,3003,2002,1001,364,91,14,1;
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, m_] := Sum[(-1)^(n - i)*Binomial[n, i]*Binomial[2^i - 1, m], {i, 1, n}] - Binomial[2^n - 2, m - 1]; Table[T[n, m], {n, 2, 10}, {m, 2, 2^n - 2}] // Flatten (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    for(n=2,6, for(m=2, 2^n -2, print1(sum(j=1,n, (-1)^(n-j)* binomial(n, j)*binomial(2^j -1, m)), ", "))) \\ G. C. Greubel, Oct 07 2017

Formula

T(n, m) = Sum((-1)^(n-i)*binomial(n, i)*binomial(2^i-1, m), i=1..n) - binomial(2^n-2, m-1).

A055127 Triangle T(n,k) of numbers of proper k-covers of an unlabeled n-set, k=1..2^n-2.

Original entry on oeis.org

0, 1, 0, 2, 5, 4, 2, 1, 0, 4, 19, 58, 113, 168, 193, 171, 119, 68, 29, 10, 3, 1, 0, 6, 53, 325, 1551, 6007, 19533, 54119, 128936, 266085, 478223, 751487, 1035609, 1254303, 1336855, 1254307, 1035622, 751526, 478320, 266272, 129226, 54484, 19898, 6297
Offset: 2

Views

Author

Vladeta Jovovic, Jun 14 2000

Keywords

Examples

			[0, 1], [0, 2, 5, 4, 2, 1], [0, 4, 19, 58, 113, 168, 193, 171, 119, 68, 29, 10, 3, 1], ...; There are 113 proper 5-covers of an unlabeled 4-set.
		

Crossrefs

Cf. A052265, A055080, A007537. Row sums give A055152.
Showing 1-3 of 3 results.